Link community detection using generative model and nonnegative matrix factorization

Detalhes bibliográficos
Autor(a) principal: Dongxiao He
Data de Publicação: 2014
Outros Autores: Di Jin, Dayou Liu, Baquero, Carlos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/33764
Resumo: Discovery of communities in complex networks is a fundamental data analysis problem with applications in various domains. While most of the existing approaches have focused on discovering communities of nodes, recent studies have shown the advantages and uses of link community discovery in networks. Generative models provide a promising class of techniques for the identification of modular structures in networks, but most generative models mainly focus on the detection of node communities rather than link communities. In this work, we propose a generative model, which is based on the importance of each node when forming links in each community, to describe the structure of link communities. We proceed to fit the model parameters by taking it as an optimization problem, and solve it using nonnegative matrix factorization. Thereafter, in order to automatically determine the number of communities, we extend the above method by introducing a strategy of iterative bipartition. This extended method not only finds the number of communities all by itself, but also obtains high efficiency, and thus it is more suitable to deal with large and unexplored real networks. We test this approach on both synthetic benchmarks and real-world networks including an application on a large biological network, and compare it with two highly related methods. Results demonstrate the superior performance of our approach over competing methods for the detection of link communities.
id RCAP_069edd51382dff9ea39f61a3ae3bd4aa
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/33764
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Link community detection using generative model and nonnegative matrix factorizationScience & TechnologyDiscovery of communities in complex networks is a fundamental data analysis problem with applications in various domains. While most of the existing approaches have focused on discovering communities of nodes, recent studies have shown the advantages and uses of link community discovery in networks. Generative models provide a promising class of techniques for the identification of modular structures in networks, but most generative models mainly focus on the detection of node communities rather than link communities. In this work, we propose a generative model, which is based on the importance of each node when forming links in each community, to describe the structure of link communities. We proceed to fit the model parameters by taking it as an optimization problem, and solve it using nonnegative matrix factorization. Thereafter, in order to automatically determine the number of communities, we extend the above method by introducing a strategy of iterative bipartition. This extended method not only finds the number of communities all by itself, but also obtains high efficiency, and thus it is more suitable to deal with large and unexplored real networks. We test this approach on both synthetic benchmarks and real-world networks including an application on a large biological network, and compare it with two highly related methods. Results demonstrate the superior performance of our approach over competing methods for the detection of link communities.This work is supported by Major State Basic Research Development Program of China (2013CB329301), National Natural Science Foundation of China (61303110, 61133011, 61373053, 61070089, 61373165, 61202308), PhD Programs Foundation of Ministry of Education of China (20130032120043), Open Project Program of Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education (93K172013K02), Innovation Foundation of Tianjin University (60302034), the TECHNO II project within Erasmus Mundus Programme of European Union, and the China Scholarship Council (award to Dongxiao He for one year's study abroad at Washington University in St Louis). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.PLOSPLoS ONEUniversidade do MinhoDongxiao HeDi JinDayou LiuBaquero, Carlos20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/33764eng1932-620310.1371/journal.pone.008689924489803http://www.plosone.org/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:38:11Zoai:repositorium.sdum.uminho.pt:1822/33764Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:34:34.462434Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Link community detection using generative model and nonnegative matrix factorization
title Link community detection using generative model and nonnegative matrix factorization
spellingShingle Link community detection using generative model and nonnegative matrix factorization
Dongxiao He
Science & Technology
title_short Link community detection using generative model and nonnegative matrix factorization
title_full Link community detection using generative model and nonnegative matrix factorization
title_fullStr Link community detection using generative model and nonnegative matrix factorization
title_full_unstemmed Link community detection using generative model and nonnegative matrix factorization
title_sort Link community detection using generative model and nonnegative matrix factorization
author Dongxiao He
author_facet Dongxiao He
Di Jin
Dayou Liu
Baquero, Carlos
author_role author
author2 Di Jin
Dayou Liu
Baquero, Carlos
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Dongxiao He
Di Jin
Dayou Liu
Baquero, Carlos
dc.subject.por.fl_str_mv Science & Technology
topic Science & Technology
description Discovery of communities in complex networks is a fundamental data analysis problem with applications in various domains. While most of the existing approaches have focused on discovering communities of nodes, recent studies have shown the advantages and uses of link community discovery in networks. Generative models provide a promising class of techniques for the identification of modular structures in networks, but most generative models mainly focus on the detection of node communities rather than link communities. In this work, we propose a generative model, which is based on the importance of each node when forming links in each community, to describe the structure of link communities. We proceed to fit the model parameters by taking it as an optimization problem, and solve it using nonnegative matrix factorization. Thereafter, in order to automatically determine the number of communities, we extend the above method by introducing a strategy of iterative bipartition. This extended method not only finds the number of communities all by itself, but also obtains high efficiency, and thus it is more suitable to deal with large and unexplored real networks. We test this approach on both synthetic benchmarks and real-world networks including an application on a large biological network, and compare it with two highly related methods. Results demonstrate the superior performance of our approach over competing methods for the detection of link communities.
publishDate 2014
dc.date.none.fl_str_mv 2014
2014-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/33764
url http://hdl.handle.net/1822/33764
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1932-6203
10.1371/journal.pone.0086899
24489803
http://www.plosone.org/
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv PLOS
PLoS ONE
publisher.none.fl_str_mv PLOS
PLoS ONE
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132867755769856