Improving land cover classification using genetic programming for feature construction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/117837 |
Resumo: | Batista, J. E., Cabral, A. I. R., Vasconcelos, M. J. P., Vanneschi, L., & Silva, S. (2021). Improving land cover classification using genetic programming for feature construction. Remote Sensing, 13(9), [1623]. https://doi.org/10.3390/rs13091623 |
id |
RCAP_06b2ddcf2636891ebe1b9f02046a7fff |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/117837 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Improving land cover classification using genetic programming for feature constructionClassificationEvolutionary computationFeature constructionGenetic programmingHyperfeaturesMachine learningMulti-class classificationSpectral indicesEarth and Planetary Sciences(all)SDG 15 - Life on LandBatista, J. E., Cabral, A. I. R., Vasconcelos, M. J. P., Vanneschi, L., & Silva, S. (2021). Improving land cover classification using genetic programming for feature construction. Remote Sensing, 13(9), [1623]. https://doi.org/10.3390/rs13091623Genetic programming (GP) is a powerful machine learning (ML) algorithm that can produce readable white-box models. Although successfully used for solving an array of problems in different scientific areas, GP is still not well known in the field of remote sensing. The M3GP algorithm, a variant of the standard GP algorithm, performs feature construction by evolving hyperfeatures from the original ones. In this work, we use the M3GP algorithm on several sets of satellite images over different countries to create hyperfeatures from satellite bands to improve the classification of land cover types. We add the evolved hyperfeatures to the reference datasets and observe a significant improvement of the performance of three state-of-the-art ML algorithms (decision trees, random forests, and XGBoost) on multiclass classifications and no significant effect on the binary classifications. We show that adding the M3GP hyperfeatures to the reference datasets brings better results than adding the well-known spectral indices NDVI, NDWI, and NBR. We also compare the performance of the M3GP hyperfeatures in the binary classification problems with those created by other feature construction methods such as FFX and EFS.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNBatista, João E.Cabral, Ana I. R.Vasconcelos, Maria J. P.Vanneschi, LeonardoSilva, Sara2021-05-18T00:30:40Z2021-05-012021-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article25application/pdfhttp://hdl.handle.net/10362/117837eng2072-4292PURE: 29765589https://doi.org/10.3390/rs13091623info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:00:46Zoai:run.unl.pt:10362/117837Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:43:41.809255Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Improving land cover classification using genetic programming for feature construction |
title |
Improving land cover classification using genetic programming for feature construction |
spellingShingle |
Improving land cover classification using genetic programming for feature construction Batista, João E. Classification Evolutionary computation Feature construction Genetic programming Hyperfeatures Machine learning Multi-class classification Spectral indices Earth and Planetary Sciences(all) SDG 15 - Life on Land |
title_short |
Improving land cover classification using genetic programming for feature construction |
title_full |
Improving land cover classification using genetic programming for feature construction |
title_fullStr |
Improving land cover classification using genetic programming for feature construction |
title_full_unstemmed |
Improving land cover classification using genetic programming for feature construction |
title_sort |
Improving land cover classification using genetic programming for feature construction |
author |
Batista, João E. |
author_facet |
Batista, João E. Cabral, Ana I. R. Vasconcelos, Maria J. P. Vanneschi, Leonardo Silva, Sara |
author_role |
author |
author2 |
Cabral, Ana I. R. Vasconcelos, Maria J. P. Vanneschi, Leonardo Silva, Sara |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
Batista, João E. Cabral, Ana I. R. Vasconcelos, Maria J. P. Vanneschi, Leonardo Silva, Sara |
dc.subject.por.fl_str_mv |
Classification Evolutionary computation Feature construction Genetic programming Hyperfeatures Machine learning Multi-class classification Spectral indices Earth and Planetary Sciences(all) SDG 15 - Life on Land |
topic |
Classification Evolutionary computation Feature construction Genetic programming Hyperfeatures Machine learning Multi-class classification Spectral indices Earth and Planetary Sciences(all) SDG 15 - Life on Land |
description |
Batista, J. E., Cabral, A. I. R., Vasconcelos, M. J. P., Vanneschi, L., & Silva, S. (2021). Improving land cover classification using genetic programming for feature construction. Remote Sensing, 13(9), [1623]. https://doi.org/10.3390/rs13091623 |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-18T00:30:40Z 2021-05-01 2021-05-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/117837 |
url |
http://hdl.handle.net/10362/117837 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2072-4292 PURE: 29765589 https://doi.org/10.3390/rs13091623 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
25 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138045956456448 |