Reconhecimento facial em ambiente não cooperativo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/34990 |
Resumo: | Nowadays, facial recognition has become very important in the field of computing and has been receiving a lot of attention over the years. Facial recognition can be used in many areas, but one area that has been growing a lot is security. Topics like access to military installations, identification of terrorist groups and people who force and abuse the law are some of the most discussed topics. Despite being a widely studied topic, there are still some limitations, especially when image acquisition is acquired from people in non-cooperative environments. The objective of this master’s thesis is the investigation of various methods of detection and facial recognition. It presents a study on the most important algorithms, and preprocessing techniques such as frontalization and facial alignment in order to be able to compare the accuracy levels of each of the algorithms. In order to obtain results, an image dataset was carried out at the University of Aveiro of various color spectrum. It was possible to observe that algorithms based on deep convolutional neural networks have a higher precision compared to several traditional methods. A first step was also taken towards developing a model of facial detection in thermal images, where there was an improvement of about 30% compared to the original model. |
id |
RCAP_0732f1c1c40d387e4a1f5a988065e67f |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/34990 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Reconhecimento facial em ambiente não cooperativoFace detectionFace recognitionImage processingDeep learningAlgorithmsImage acquisitionNowadays, facial recognition has become very important in the field of computing and has been receiving a lot of attention over the years. Facial recognition can be used in many areas, but one area that has been growing a lot is security. Topics like access to military installations, identification of terrorist groups and people who force and abuse the law are some of the most discussed topics. Despite being a widely studied topic, there are still some limitations, especially when image acquisition is acquired from people in non-cooperative environments. The objective of this master’s thesis is the investigation of various methods of detection and facial recognition. It presents a study on the most important algorithms, and preprocessing techniques such as frontalization and facial alignment in order to be able to compare the accuracy levels of each of the algorithms. In order to obtain results, an image dataset was carried out at the University of Aveiro of various color spectrum. It was possible to observe that algorithms based on deep convolutional neural networks have a higher precision compared to several traditional methods. A first step was also taken towards developing a model of facial detection in thermal images, where there was an improvement of about 30% compared to the original model.Nos dias de hoje, o reconhecimento facial tornou-se uma marco bastante importante na área da informática e tem vindo a receber bastante atenção ao longo dos anos. O reconhecimento facial pode ser utilizado em bastantes áreas, porém uma área que tem estado em bastante crescimento é a área da segurança. Temas como acessos a instalações militares, identificação de grupos terroristas e pessoas que forçam e abusam da lei são alguns dos temas mais abordados. Apesar de ser um tema bastante estudado existem ainda algumas limitações, principalmente quando a aquisição das imagem são adquiridas de pessoas em ambientes não-cooperativos. O objetivo desta dissertação de mestrado é a investigação de vários métodos de deteção e reconhecimento facial. Apresenta um estudo sobre os mais importantes algoritmos, e técnicas de pré-processamento como frontalização e alinhamento facial de modo a conseguir comparar os níveis de precisão de cada um dos algoritmos. De modo a obter resultados foi efetuado um dataset de imagens na Universidade de Aveiro de vários espetros de cores. Foi possível observar que algoritmos baseados em redes neurais convolucional profundas têm uma precisão mais elevada em relação a vários métodos tradicionais. Foi ainda dado um primeiro passo no sentido de desenvolver um modelo de deteção facial em imagens térmicas, onde existiu uma melhoria de cerca de 30% em relação ao modelo original.2022-10-25T15:26:32Z2022-07-21T00:00:00Z2022-07-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/34990porMenino, Rúben Miguel Pauloinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:07:30Zoai:ria.ua.pt:10773/34990Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:10.155819Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Reconhecimento facial em ambiente não cooperativo |
title |
Reconhecimento facial em ambiente não cooperativo |
spellingShingle |
Reconhecimento facial em ambiente não cooperativo Menino, Rúben Miguel Paulo Face detection Face recognition Image processing Deep learning Algorithms Image acquisition |
title_short |
Reconhecimento facial em ambiente não cooperativo |
title_full |
Reconhecimento facial em ambiente não cooperativo |
title_fullStr |
Reconhecimento facial em ambiente não cooperativo |
title_full_unstemmed |
Reconhecimento facial em ambiente não cooperativo |
title_sort |
Reconhecimento facial em ambiente não cooperativo |
author |
Menino, Rúben Miguel Paulo |
author_facet |
Menino, Rúben Miguel Paulo |
author_role |
author |
dc.contributor.author.fl_str_mv |
Menino, Rúben Miguel Paulo |
dc.subject.por.fl_str_mv |
Face detection Face recognition Image processing Deep learning Algorithms Image acquisition |
topic |
Face detection Face recognition Image processing Deep learning Algorithms Image acquisition |
description |
Nowadays, facial recognition has become very important in the field of computing and has been receiving a lot of attention over the years. Facial recognition can be used in many areas, but one area that has been growing a lot is security. Topics like access to military installations, identification of terrorist groups and people who force and abuse the law are some of the most discussed topics. Despite being a widely studied topic, there are still some limitations, especially when image acquisition is acquired from people in non-cooperative environments. The objective of this master’s thesis is the investigation of various methods of detection and facial recognition. It presents a study on the most important algorithms, and preprocessing techniques such as frontalization and facial alignment in order to be able to compare the accuracy levels of each of the algorithms. In order to obtain results, an image dataset was carried out at the University of Aveiro of various color spectrum. It was possible to observe that algorithms based on deep convolutional neural networks have a higher precision compared to several traditional methods. A first step was also taken towards developing a model of facial detection in thermal images, where there was an improvement of about 30% compared to the original model. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10-25T15:26:32Z 2022-07-21T00:00:00Z 2022-07-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/34990 |
url |
http://hdl.handle.net/10773/34990 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137716572520448 |