Reconhecimento facial em ambiente não cooperativo

Detalhes bibliográficos
Autor(a) principal: Menino, Rúben Miguel Paulo
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/34990
Resumo: Nowadays, facial recognition has become very important in the field of computing and has been receiving a lot of attention over the years. Facial recognition can be used in many areas, but one area that has been growing a lot is security. Topics like access to military installations, identification of terrorist groups and people who force and abuse the law are some of the most discussed topics. Despite being a widely studied topic, there are still some limitations, especially when image acquisition is acquired from people in non-cooperative environments. The objective of this master’s thesis is the investigation of various methods of detection and facial recognition. It presents a study on the most important algorithms, and preprocessing techniques such as frontalization and facial alignment in order to be able to compare the accuracy levels of each of the algorithms. In order to obtain results, an image dataset was carried out at the University of Aveiro of various color spectrum. It was possible to observe that algorithms based on deep convolutional neural networks have a higher precision compared to several traditional methods. A first step was also taken towards developing a model of facial detection in thermal images, where there was an improvement of about 30% compared to the original model.
id RCAP_0732f1c1c40d387e4a1f5a988065e67f
oai_identifier_str oai:ria.ua.pt:10773/34990
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Reconhecimento facial em ambiente não cooperativoFace detectionFace recognitionImage processingDeep learningAlgorithmsImage acquisitionNowadays, facial recognition has become very important in the field of computing and has been receiving a lot of attention over the years. Facial recognition can be used in many areas, but one area that has been growing a lot is security. Topics like access to military installations, identification of terrorist groups and people who force and abuse the law are some of the most discussed topics. Despite being a widely studied topic, there are still some limitations, especially when image acquisition is acquired from people in non-cooperative environments. The objective of this master’s thesis is the investigation of various methods of detection and facial recognition. It presents a study on the most important algorithms, and preprocessing techniques such as frontalization and facial alignment in order to be able to compare the accuracy levels of each of the algorithms. In order to obtain results, an image dataset was carried out at the University of Aveiro of various color spectrum. It was possible to observe that algorithms based on deep convolutional neural networks have a higher precision compared to several traditional methods. A first step was also taken towards developing a model of facial detection in thermal images, where there was an improvement of about 30% compared to the original model.Nos dias de hoje, o reconhecimento facial tornou-se uma marco bastante importante na área da informática e tem vindo a receber bastante atenção ao longo dos anos. O reconhecimento facial pode ser utilizado em bastantes áreas, porém uma área que tem estado em bastante crescimento é a área da segurança. Temas como acessos a instalações militares, identificação de grupos terroristas e pessoas que forçam e abusam da lei são alguns dos temas mais abordados. Apesar de ser um tema bastante estudado existem ainda algumas limitações, principalmente quando a aquisição das imagem são adquiridas de pessoas em ambientes não-cooperativos. O objetivo desta dissertação de mestrado é a investigação de vários métodos de deteção e reconhecimento facial. Apresenta um estudo sobre os mais importantes algoritmos, e técnicas de pré-processamento como frontalização e alinhamento facial de modo a conseguir comparar os níveis de precisão de cada um dos algoritmos. De modo a obter resultados foi efetuado um dataset de imagens na Universidade de Aveiro de vários espetros de cores. Foi possível observar que algoritmos baseados em redes neurais convolucional profundas têm uma precisão mais elevada em relação a vários métodos tradicionais. Foi ainda dado um primeiro passo no sentido de desenvolver um modelo de deteção facial em imagens térmicas, onde existiu uma melhoria de cerca de 30% em relação ao modelo original.2022-10-25T15:26:32Z2022-07-21T00:00:00Z2022-07-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/34990porMenino, Rúben Miguel Pauloinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:07:30Zoai:ria.ua.pt:10773/34990Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:10.155819Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Reconhecimento facial em ambiente não cooperativo
title Reconhecimento facial em ambiente não cooperativo
spellingShingle Reconhecimento facial em ambiente não cooperativo
Menino, Rúben Miguel Paulo
Face detection
Face recognition
Image processing
Deep learning
Algorithms
Image acquisition
title_short Reconhecimento facial em ambiente não cooperativo
title_full Reconhecimento facial em ambiente não cooperativo
title_fullStr Reconhecimento facial em ambiente não cooperativo
title_full_unstemmed Reconhecimento facial em ambiente não cooperativo
title_sort Reconhecimento facial em ambiente não cooperativo
author Menino, Rúben Miguel Paulo
author_facet Menino, Rúben Miguel Paulo
author_role author
dc.contributor.author.fl_str_mv Menino, Rúben Miguel Paulo
dc.subject.por.fl_str_mv Face detection
Face recognition
Image processing
Deep learning
Algorithms
Image acquisition
topic Face detection
Face recognition
Image processing
Deep learning
Algorithms
Image acquisition
description Nowadays, facial recognition has become very important in the field of computing and has been receiving a lot of attention over the years. Facial recognition can be used in many areas, but one area that has been growing a lot is security. Topics like access to military installations, identification of terrorist groups and people who force and abuse the law are some of the most discussed topics. Despite being a widely studied topic, there are still some limitations, especially when image acquisition is acquired from people in non-cooperative environments. The objective of this master’s thesis is the investigation of various methods of detection and facial recognition. It presents a study on the most important algorithms, and preprocessing techniques such as frontalization and facial alignment in order to be able to compare the accuracy levels of each of the algorithms. In order to obtain results, an image dataset was carried out at the University of Aveiro of various color spectrum. It was possible to observe that algorithms based on deep convolutional neural networks have a higher precision compared to several traditional methods. A first step was also taken towards developing a model of facial detection in thermal images, where there was an improvement of about 30% compared to the original model.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-25T15:26:32Z
2022-07-21T00:00:00Z
2022-07-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/34990
url http://hdl.handle.net/10773/34990
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137716572520448