A multi-driven approach to requirements analysis of data warehouse schema: a case study
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/22145 |
Resumo: | In this paper, we present a multi-driven approach to data modeling in data warehousing which integrates three existing approaches normally used separately: goal-driven, user-driven and data-driven; and two approaches usually not used in data warehousing field: process-driven and technology-driven. Goal-driven approach produces subjects and KPIs (Key Performance Indicators) of main business fields. User-driven approach produces analytical requirements represented by measures and dimensions of each subject. Process-driven approach propose improvements in business processes (by using and creating subject oriented enterprise data schema) to satisfy the KPIs, measures and dimensions identified in the previous approaches. Technology-driven approach is an enabler or an obstacle to be considered when we model a data warehouse data model. Data-driven approach is a combination of the results of previous approaches and results in a data model of a data warehouse. By using a multi driven approach with five stages, we can get a layered data warehouse model more aligned with organizational and individual needs. This will be illustrated by using examples of our case study. |
id |
RCAP_0743fc51169dd766a50dd481b6863037 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/22145 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A multi-driven approach to requirements analysis of data warehouse schema: a case studyRequirement analysisData warehouse designCase studyIn this paper, we present a multi-driven approach to data modeling in data warehousing which integrates three existing approaches normally used separately: goal-driven, user-driven and data-driven; and two approaches usually not used in data warehousing field: process-driven and technology-driven. Goal-driven approach produces subjects and KPIs (Key Performance Indicators) of main business fields. User-driven approach produces analytical requirements represented by measures and dimensions of each subject. Process-driven approach propose improvements in business processes (by using and creating subject oriented enterprise data schema) to satisfy the KPIs, measures and dimensions identified in the previous approaches. Technology-driven approach is an enabler or an obstacle to be considered when we model a data warehouse data model. Data-driven approach is a combination of the results of previous approaches and results in a data model of a data warehouse. By using a multi driven approach with five stages, we can get a layered data warehouse model more aligned with organizational and individual needs. This will be illustrated by using examples of our case study.International Association for Development of the Information Society (IADIS)Universidade do MinhoSá, Jorge Vaz de Oliveira eCarvalho, João ÁlvaroKaldeich, Claus2012-10-202012-10-20T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/22145enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T04:49:02Zoai:repositorium.sdum.uminho.pt:1822/22145Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T04:49:02Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A multi-driven approach to requirements analysis of data warehouse schema: a case study |
title |
A multi-driven approach to requirements analysis of data warehouse schema: a case study |
spellingShingle |
A multi-driven approach to requirements analysis of data warehouse schema: a case study Sá, Jorge Vaz de Oliveira e Requirement analysis Data warehouse design Case study |
title_short |
A multi-driven approach to requirements analysis of data warehouse schema: a case study |
title_full |
A multi-driven approach to requirements analysis of data warehouse schema: a case study |
title_fullStr |
A multi-driven approach to requirements analysis of data warehouse schema: a case study |
title_full_unstemmed |
A multi-driven approach to requirements analysis of data warehouse schema: a case study |
title_sort |
A multi-driven approach to requirements analysis of data warehouse schema: a case study |
author |
Sá, Jorge Vaz de Oliveira e |
author_facet |
Sá, Jorge Vaz de Oliveira e Carvalho, João Álvaro Kaldeich, Claus |
author_role |
author |
author2 |
Carvalho, João Álvaro Kaldeich, Claus |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Sá, Jorge Vaz de Oliveira e Carvalho, João Álvaro Kaldeich, Claus |
dc.subject.por.fl_str_mv |
Requirement analysis Data warehouse design Case study |
topic |
Requirement analysis Data warehouse design Case study |
description |
In this paper, we present a multi-driven approach to data modeling in data warehousing which integrates three existing approaches normally used separately: goal-driven, user-driven and data-driven; and two approaches usually not used in data warehousing field: process-driven and technology-driven. Goal-driven approach produces subjects and KPIs (Key Performance Indicators) of main business fields. User-driven approach produces analytical requirements represented by measures and dimensions of each subject. Process-driven approach propose improvements in business processes (by using and creating subject oriented enterprise data schema) to satisfy the KPIs, measures and dimensions identified in the previous approaches. Technology-driven approach is an enabler or an obstacle to be considered when we model a data warehouse data model. Data-driven approach is a combination of the results of previous approaches and results in a data model of a data warehouse. By using a multi driven approach with five stages, we can get a layered data warehouse model more aligned with organizational and individual needs. This will be illustrated by using examples of our case study. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-10-20 2012-10-20T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/22145 |
url |
http://hdl.handle.net/1822/22145 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
International Association for Development of the Information Society (IADIS) |
publisher.none.fl_str_mv |
International Association for Development of the Information Society (IADIS) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817544428156354560 |