Chitosan based scaffolds for bone regeneration

Detalhes bibliográficos
Autor(a) principal: Marbelia, Lisendra
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/7459
Resumo: Tissue engineering research attempts to satisfy the needs of support, reinforcement and in some cases organization of the regenerating tissue with a controlled supply of bioactive substances that might positively influence the behaviour of incorporated or ingrowing cells. As demonstrated by the recent advances on biomaterials, the ideal scaffold for tissue regeneration should offer a 3D interconnected porous structure behaving as a template to promote cells adhesion and proliferation and vascularisation as well thus stimulating the new tissue ingrowth. A special interest has been focused on chitosan (CH - the partially deacetylated derivative of chitin) scaffolds for bone regeneration due to its biological and physical properties, in spite of some drawbacks regarding its lack of mechanical strength and bioactivity. The incorporation of bioactive calcium phosphates materials in the polymer matrix is expected to reinforce chitosan scaffolds improving their mechanical performance and osteoconductivity. In the present work, chitosan based scaffolds were produced by freeze-drying CH solutions containing calcium phosphate (CaP) particles, either as fibers of hydroxyapatite (HA), platelets of monetite or a mixture of both. CaP particles were prepared by a wet precipitation method. The calcium phosphate precipitation was monitored by taking a number of samples during 3-days. Evolution of the morphology and crystal phase composition of the precipitated particles were followed by scanning electron microscopy (SEM), N2 adsorption using the BET isotherm (BET), and X-ray diffraction (XRD). It was observed that the increase of refluxing temperature allowed a faster transformation of octacalcium phosphate fibers into HA fibers, hence shortening the precipitation time required for obtaining HA fibers, Chitosan based scaffolds suspensions at two different pH values were frozen at three different temperatures before freeze-drying (thermally induced phase separation-TIPS). SEM, XRD, microcomputed tomography (μ-CT) and Fourier transformed infrared spectroscopy (FTIR) were used to analyze the physical and chemical properties of the composite scaffolds. Compressive mechanical tests were also undertaken to characterize the materials. Bioactivity studies were performed in simulated body fluid (SBF) solutions by monitoring the Ca and P concentration variations of SBF solutions. Highly interconnected macroporous scaffolds with a pore size ranging from of 50 to 250μm, interconnectivity around 91-98.5%, and porosity higher than 80% were obtained. The freezing temperature and the pH of chitosan solution/suspension revealed to play a significant influence in the pore structure. The higher pH (pH=5) and the higher freezing temperature (T=0ºC) were found as the most favourable conditions for ice crystal growth which resulted in larger pores. It was also observed that CaP particles incorporation in the CH matrix increased the scaffold mechanical strength which was also conditioned by the pore size and by the reinforcing particle morphology. The bioactivity studies revealed the CaP contribution for the scaffold bioactivity. The composite scaffolds having brushite and HA (obtained at pH=2) exhibited enhanced bioactivity as compared to composite CH/HA scaffolds based. CH based scaffolds were also prepared by incorporating HA granules loaded with dexamethasone (DEX), a drug model, in CH solution. The granules were obtained by spray drying HA nanosized particles suspended in DEX solution. The drug release profiles of DEX were determined in phosphate-buffered solution (PBS) by DEX concentration evaluation in the releasing medium by Ultraviolet (UV) spectroscopy at the wavelength of 242 nm. Among the different DEX release patterns corresponding to the various DEX loading methodologies which were tested, an adequate release profile could be selected: it showed that the release of 80% of the DEX loaded amount could be ensured during ~30 days, thus enabling a prolonged and slowest DEX release as compared to literature reports. It is thus found that the CH scaffolds engineered with a calcium phosphate based drug delivery system (DDS) provides the desirable association of a bioactive and osteoconductive matrix with an in situ controlled release of a therapeutic agent. These results point out an additional potential of the composite CH/HA scaffolds for behaving as a controlled drug release system (DDS).
id RCAP_0766ee4260de9c4c43c3174fae3ca079
oai_identifier_str oai:ria.ua.pt:10773/7459
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Chitosan based scaffolds for bone regenerationEngenharia de materiaisBiomateriaisMateriais bioactivosQuitosanoHidroxiapatiteRegeneração ósseaTecidos (biologia)Tissue engineering research attempts to satisfy the needs of support, reinforcement and in some cases organization of the regenerating tissue with a controlled supply of bioactive substances that might positively influence the behaviour of incorporated or ingrowing cells. As demonstrated by the recent advances on biomaterials, the ideal scaffold for tissue regeneration should offer a 3D interconnected porous structure behaving as a template to promote cells adhesion and proliferation and vascularisation as well thus stimulating the new tissue ingrowth. A special interest has been focused on chitosan (CH - the partially deacetylated derivative of chitin) scaffolds for bone regeneration due to its biological and physical properties, in spite of some drawbacks regarding its lack of mechanical strength and bioactivity. The incorporation of bioactive calcium phosphates materials in the polymer matrix is expected to reinforce chitosan scaffolds improving their mechanical performance and osteoconductivity. In the present work, chitosan based scaffolds were produced by freeze-drying CH solutions containing calcium phosphate (CaP) particles, either as fibers of hydroxyapatite (HA), platelets of monetite or a mixture of both. CaP particles were prepared by a wet precipitation method. The calcium phosphate precipitation was monitored by taking a number of samples during 3-days. Evolution of the morphology and crystal phase composition of the precipitated particles were followed by scanning electron microscopy (SEM), N2 adsorption using the BET isotherm (BET), and X-ray diffraction (XRD). It was observed that the increase of refluxing temperature allowed a faster transformation of octacalcium phosphate fibers into HA fibers, hence shortening the precipitation time required for obtaining HA fibers, Chitosan based scaffolds suspensions at two different pH values were frozen at three different temperatures before freeze-drying (thermally induced phase separation-TIPS). SEM, XRD, microcomputed tomography (μ-CT) and Fourier transformed infrared spectroscopy (FTIR) were used to analyze the physical and chemical properties of the composite scaffolds. Compressive mechanical tests were also undertaken to characterize the materials. Bioactivity studies were performed in simulated body fluid (SBF) solutions by monitoring the Ca and P concentration variations of SBF solutions. Highly interconnected macroporous scaffolds with a pore size ranging from of 50 to 250μm, interconnectivity around 91-98.5%, and porosity higher than 80% were obtained. The freezing temperature and the pH of chitosan solution/suspension revealed to play a significant influence in the pore structure. The higher pH (pH=5) and the higher freezing temperature (T=0ºC) were found as the most favourable conditions for ice crystal growth which resulted in larger pores. It was also observed that CaP particles incorporation in the CH matrix increased the scaffold mechanical strength which was also conditioned by the pore size and by the reinforcing particle morphology. The bioactivity studies revealed the CaP contribution for the scaffold bioactivity. The composite scaffolds having brushite and HA (obtained at pH=2) exhibited enhanced bioactivity as compared to composite CH/HA scaffolds based. CH based scaffolds were also prepared by incorporating HA granules loaded with dexamethasone (DEX), a drug model, in CH solution. The granules were obtained by spray drying HA nanosized particles suspended in DEX solution. The drug release profiles of DEX were determined in phosphate-buffered solution (PBS) by DEX concentration evaluation in the releasing medium by Ultraviolet (UV) spectroscopy at the wavelength of 242 nm. Among the different DEX release patterns corresponding to the various DEX loading methodologies which were tested, an adequate release profile could be selected: it showed that the release of 80% of the DEX loaded amount could be ensured during ~30 days, thus enabling a prolonged and slowest DEX release as compared to literature reports. It is thus found that the CH scaffolds engineered with a calcium phosphate based drug delivery system (DDS) provides the desirable association of a bioactive and osteoconductive matrix with an in situ controlled release of a therapeutic agent. These results point out an additional potential of the composite CH/HA scaffolds for behaving as a controlled drug release system (DDS).A investigação em engenharia de tecidos (ET) tem procurado soluções para as necessidades de reforço e de regeneração dos tecidos recorrendo por vezes a substâncias bioactivas que podem favorecer a proliferação celular. Os avanços recentes em ET têm beneficiado da utilização de matrizes tridimensionais porosas (scaffolds) que permitem a adesão, proliferação e regeneração das células bem como a vascularização, estimulando a formação de novo tecido. A obtenção de scaffolds de quitosano (CH) para a regeneração óssea tem merecido especial interesse devido às suas propriedades biológicas e físicas, apresentando no entanto o inconveniente da falta de resistência mecânica e de bioatividade. A obtenção de scaffolds compósitos por incorporação na matriz polimérica de materiais bioactivos de fosfato de cálcio, permite reforçar o scaffold, melhorando o seu desempenho mecânico e a sua osteocondutividade. No presente trabalho, produziram-se scaffolds compósitos de quitosano/hidroxiapatite por processos de congelamento e liofilização de suspensões de fosfatos de cálcio (CaP) em soluções de CH. Utilizaramse CaP sintetizados laboratorialmente, quer na forma de fibras de hidroxiapatite (HA), quer de lamelas de monetite, quer de mistura dos dois. Os CaP foram sintetizados por um método de precipitação em meio aquoso, tendo-se monitorizado a precipitação de fosfato de cálcio durante 3 dias. Avaliou-se a evolução das fases cristalinas e da morfologia das partículas precipitadas por microscopia eletrónica de varrimento (SEM), difracção de raios X (XRD) e por adsorção de N2 usando a isotérmica de BET. Os resultados evidenciaram que o aumento da temperatura de refluxo acelera a transformação das fibras de octacalcium fosfato em fibras de HÁ, permitindo reduzir o tempo de precipitação total para obtenção de fibras de HA As soluções de quitosano e as suspensões de HAP em solução de CH, a dois valores de pH (pH=2 e pH= 5), foram congeladas a três temperaturas diferentes antes de serem liofilizadas. Caracterizaram-se os scaffolds por SEM, DRX, microtomografia computorizada (μ-CT) e espectroscopia de infravermelhos com transformada de Fourier (FTIR), tendo-se ainda avaliado o seu comportamento mecânico em compressão. Obtiveram-se scaffolds compósitos macroporosos com porosidade superior a 80%, tamanho de poro na gama 50-250μm e porosidade interconectada com grau de interconexão de 91-98.5%. Verificou-se que o tamanho e morfologia de poro dos scaffolds é condicionado pelo pH das suspensões e pela temperatura de congelamento. O valor de pH mais elevado (pH=5) e a temperatura de congelamento mais elevada (T=0ºC) são as condições que mais favorecem o crescimento de cristais de gelo e por conseguinte a formação de poros de maior dimensão. Verificou-se também que a incorporação de partículas de CaP na matriz polimérica de CH aumenta a resistência mecânica do scaffold, que é também condicionada pelo tamanho de poro e pela morfologia da partícula de CaP. O estudo do comportamento bioactivo dos scaffolds compósitos em soluções simuladoras do plasma humano (SBF), monitorizando a variação das concentrações de Ca e P na solução de SBF, evidenciou o contributo das partículas de CaP para a bioactividade do scaffold. Os scaffolds compósitos em que coexistem brushite e HA (preparados a pH=2) evidenciaram bioactividade superior á dos scaffolds compósitos CH/HA. Preparam-se também scaffolds incorporando grânulos de hidroxiapatite carregados com um fármaco modelo, a dexametasona (DEX), na solução inicial de CH. Os grânulos obtiveram-se por atomização de suspensões de HA nanométrica em solução de DEX. Construíram-se os perfis de libertação da DEX em solução tampão fosfato (PBS) por determinação da concentração de DEX por espectroscopia de ultravioleta (UV) ao comprimento de onda de 242 nm. Entre as várias curvas de libertação de DEX decorrentes das diferentes metodologias testadas para carregamento do fármaco, evidenciou-se um perfil de libertação de DEX segundo o qual cerca de 80% da DEX é libertado ao longo de ~30 dias, assegurando-se assim uma libertação mais lenta e prolongada do que as referidas na literatura para a DEX As características dos scaffolds compósitos preparados no presente trabalho apontam os materiais produzidos como promissores para aplicação em engenharia de tecidos, apresentando como potencial adicional a capacidade de se comportarem como sistemas de libertação controlada de fármacos.Universidade de Aveiro2013-02-05T15:48:37Z2011-06-13T00:00:00Z2011-06-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/7459engMarbelia, Lisendrainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:12:56Zoai:ria.ua.pt:10773/7459Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:45:08.152142Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Chitosan based scaffolds for bone regeneration
title Chitosan based scaffolds for bone regeneration
spellingShingle Chitosan based scaffolds for bone regeneration
Marbelia, Lisendra
Engenharia de materiais
Biomateriais
Materiais bioactivos
Quitosano
Hidroxiapatite
Regeneração óssea
Tecidos (biologia)
title_short Chitosan based scaffolds for bone regeneration
title_full Chitosan based scaffolds for bone regeneration
title_fullStr Chitosan based scaffolds for bone regeneration
title_full_unstemmed Chitosan based scaffolds for bone regeneration
title_sort Chitosan based scaffolds for bone regeneration
author Marbelia, Lisendra
author_facet Marbelia, Lisendra
author_role author
dc.contributor.author.fl_str_mv Marbelia, Lisendra
dc.subject.por.fl_str_mv Engenharia de materiais
Biomateriais
Materiais bioactivos
Quitosano
Hidroxiapatite
Regeneração óssea
Tecidos (biologia)
topic Engenharia de materiais
Biomateriais
Materiais bioactivos
Quitosano
Hidroxiapatite
Regeneração óssea
Tecidos (biologia)
description Tissue engineering research attempts to satisfy the needs of support, reinforcement and in some cases organization of the regenerating tissue with a controlled supply of bioactive substances that might positively influence the behaviour of incorporated or ingrowing cells. As demonstrated by the recent advances on biomaterials, the ideal scaffold for tissue regeneration should offer a 3D interconnected porous structure behaving as a template to promote cells adhesion and proliferation and vascularisation as well thus stimulating the new tissue ingrowth. A special interest has been focused on chitosan (CH - the partially deacetylated derivative of chitin) scaffolds for bone regeneration due to its biological and physical properties, in spite of some drawbacks regarding its lack of mechanical strength and bioactivity. The incorporation of bioactive calcium phosphates materials in the polymer matrix is expected to reinforce chitosan scaffolds improving their mechanical performance and osteoconductivity. In the present work, chitosan based scaffolds were produced by freeze-drying CH solutions containing calcium phosphate (CaP) particles, either as fibers of hydroxyapatite (HA), platelets of monetite or a mixture of both. CaP particles were prepared by a wet precipitation method. The calcium phosphate precipitation was monitored by taking a number of samples during 3-days. Evolution of the morphology and crystal phase composition of the precipitated particles were followed by scanning electron microscopy (SEM), N2 adsorption using the BET isotherm (BET), and X-ray diffraction (XRD). It was observed that the increase of refluxing temperature allowed a faster transformation of octacalcium phosphate fibers into HA fibers, hence shortening the precipitation time required for obtaining HA fibers, Chitosan based scaffolds suspensions at two different pH values were frozen at three different temperatures before freeze-drying (thermally induced phase separation-TIPS). SEM, XRD, microcomputed tomography (μ-CT) and Fourier transformed infrared spectroscopy (FTIR) were used to analyze the physical and chemical properties of the composite scaffolds. Compressive mechanical tests were also undertaken to characterize the materials. Bioactivity studies were performed in simulated body fluid (SBF) solutions by monitoring the Ca and P concentration variations of SBF solutions. Highly interconnected macroporous scaffolds with a pore size ranging from of 50 to 250μm, interconnectivity around 91-98.5%, and porosity higher than 80% were obtained. The freezing temperature and the pH of chitosan solution/suspension revealed to play a significant influence in the pore structure. The higher pH (pH=5) and the higher freezing temperature (T=0ºC) were found as the most favourable conditions for ice crystal growth which resulted in larger pores. It was also observed that CaP particles incorporation in the CH matrix increased the scaffold mechanical strength which was also conditioned by the pore size and by the reinforcing particle morphology. The bioactivity studies revealed the CaP contribution for the scaffold bioactivity. The composite scaffolds having brushite and HA (obtained at pH=2) exhibited enhanced bioactivity as compared to composite CH/HA scaffolds based. CH based scaffolds were also prepared by incorporating HA granules loaded with dexamethasone (DEX), a drug model, in CH solution. The granules were obtained by spray drying HA nanosized particles suspended in DEX solution. The drug release profiles of DEX were determined in phosphate-buffered solution (PBS) by DEX concentration evaluation in the releasing medium by Ultraviolet (UV) spectroscopy at the wavelength of 242 nm. Among the different DEX release patterns corresponding to the various DEX loading methodologies which were tested, an adequate release profile could be selected: it showed that the release of 80% of the DEX loaded amount could be ensured during ~30 days, thus enabling a prolonged and slowest DEX release as compared to literature reports. It is thus found that the CH scaffolds engineered with a calcium phosphate based drug delivery system (DDS) provides the desirable association of a bioactive and osteoconductive matrix with an in situ controlled release of a therapeutic agent. These results point out an additional potential of the composite CH/HA scaffolds for behaving as a controlled drug release system (DDS).
publishDate 2011
dc.date.none.fl_str_mv 2011-06-13T00:00:00Z
2011-06-13
2013-02-05T15:48:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/7459
url http://hdl.handle.net/10773/7459
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Aveiro
publisher.none.fl_str_mv Universidade de Aveiro
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137503682232320