Pricing perpetual put options by the black–scholes equation with a nonlinear volatility function
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.5/24431 |
Resumo: | We investigate qualitative and quantitative behavior of a solution of the mathematical model for pricing American style of perpetual put options. We assume the option price is a solution to the stationary generalized Black–Scholes equation in which the volatility function may depend on the second derivative of the option price itself.We prove existence and uniqueness of a solution to the free boundary problem. We derive a single implicit equation for the free boundary position and the closed form formula for the option price. It is a generalization of the well-known explicit closed form solution derived by Merton for the case of a constant volatility. We also present results of numerical computations of the free boundary position, option price and their dependence on model parameters. |
id |
RCAP_080e56f1745b3f38b891691c6b160ba1 |
---|---|
oai_identifier_str |
oai:www.repository.utl.pt:10400.5/24431 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Pricing perpetual put options by the black–scholes equation with a nonlinear volatility functionOption pricingNonlinear Black–Scholes EquationPerpetual American Put OptionEarly Exercise BoundaryWe investigate qualitative and quantitative behavior of a solution of the mathematical model for pricing American style of perpetual put options. We assume the option price is a solution to the stationary generalized Black–Scholes equation in which the volatility function may depend on the second derivative of the option price itself.We prove existence and uniqueness of a solution to the free boundary problem. We derive a single implicit equation for the free boundary position and the closed form formula for the option price. It is a generalization of the well-known explicit closed form solution derived by Merton for the case of a constant volatility. We also present results of numerical computations of the free boundary position, option price and their dependence on model parameters.SpringerRepositório da Universidade de LisboaGrossinho, Maria do RosárioFaghan, Yaser KordŠevčovič, Daniel2022-05-31T09:52:11Z20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/24431engGrossinho, Maria do Rosário, Yaser Kord Faghan and Daniel Ševčovič. (2017). "Pricing perpetual put options by the black–scholes equation with a nonlinear volatility function" . Asia-Pacific Financial Markets. Vol. 24: pp. 291-308. (Search PDF in 2023).info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-04-23T01:30:45Zoai:www.repository.utl.pt:10400.5/24431Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:08:28.817060Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Pricing perpetual put options by the black–scholes equation with a nonlinear volatility function |
title |
Pricing perpetual put options by the black–scholes equation with a nonlinear volatility function |
spellingShingle |
Pricing perpetual put options by the black–scholes equation with a nonlinear volatility function Grossinho, Maria do Rosário Option pricing Nonlinear Black–Scholes Equation Perpetual American Put Option Early Exercise Boundary |
title_short |
Pricing perpetual put options by the black–scholes equation with a nonlinear volatility function |
title_full |
Pricing perpetual put options by the black–scholes equation with a nonlinear volatility function |
title_fullStr |
Pricing perpetual put options by the black–scholes equation with a nonlinear volatility function |
title_full_unstemmed |
Pricing perpetual put options by the black–scholes equation with a nonlinear volatility function |
title_sort |
Pricing perpetual put options by the black–scholes equation with a nonlinear volatility function |
author |
Grossinho, Maria do Rosário |
author_facet |
Grossinho, Maria do Rosário Faghan, Yaser Kord Ševčovič, Daniel |
author_role |
author |
author2 |
Faghan, Yaser Kord Ševčovič, Daniel |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Grossinho, Maria do Rosário Faghan, Yaser Kord Ševčovič, Daniel |
dc.subject.por.fl_str_mv |
Option pricing Nonlinear Black–Scholes Equation Perpetual American Put Option Early Exercise Boundary |
topic |
Option pricing Nonlinear Black–Scholes Equation Perpetual American Put Option Early Exercise Boundary |
description |
We investigate qualitative and quantitative behavior of a solution of the mathematical model for pricing American style of perpetual put options. We assume the option price is a solution to the stationary generalized Black–Scholes equation in which the volatility function may depend on the second derivative of the option price itself.We prove existence and uniqueness of a solution to the free boundary problem. We derive a single implicit equation for the free boundary position and the closed form formula for the option price. It is a generalization of the well-known explicit closed form solution derived by Merton for the case of a constant volatility. We also present results of numerical computations of the free boundary position, option price and their dependence on model parameters. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2017-01-01T00:00:00Z 2022-05-31T09:52:11Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/24431 |
url |
http://hdl.handle.net/10400.5/24431 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Grossinho, Maria do Rosário, Yaser Kord Faghan and Daniel Ševčovič. (2017). "Pricing perpetual put options by the black–scholes equation with a nonlinear volatility function" . Asia-Pacific Financial Markets. Vol. 24: pp. 291-308. (Search PDF in 2023). |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1817551778402533376 |