Combining landscape fire simulations with stand-level growth simulations to assist landowners in building wildfire-resilient landscapes

Detalhes bibliográficos
Autor(a) principal: Barreiro, Susana
Data de Publicação: 2021
Outros Autores: Benali, Akli, Rua, João C.P., Tomé, Margarida, Santos, José L., Pereira, José M.C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.5/22563
Resumo: The wildfire regime in Portugal has been responsible for millions of hectares of burnt area, and Alvares parish is no exception. In 2017, a severe wildfire burnt 60% of its area. Land abandonment has been increasing since the mid 20th century, and a large fraction of the forest area belongs to quasi-absent landowners. This has given rise to large, almost unbroken expanses of undermanaged forests that, in combination with rugged topography, originates a landscape prone to large, intense wildfires. Thus, a change in landscape composition and structure capable of reducing flammability and promoting fuel discontinuity is urgently needed. A fire spread simulator and a forest growth simulator were combined to show the impact of improving management at landscape level. It was assumed that the probability of large wildfires may be reduced by setting aside forest area for the implementation of a fuel break network (FBN) and increasing the area under sustainable forest management. Three levels of management intensity were simulated by restricting the area of Quasi-absent non-industrial owners to 34.5%, 20.1%, and 8.5% of the Alvares forest area, in favor of increasing the area of active and semi-active non-industrial owners (current, moderate, and high management scenarios). Different FBN extents, representing four levels of network implementation priority were combined with the management levels, resulting in 12 scenarios. To evaluate the impact of fire, simulations assuming no-fire, no-FBN, and current management intensity were performed, whereas the impact of operation costs was assessed assuming reduced costs for silvicultural operations. Per hectare simulations were then scaled up to the parish level and volume harvested and net present values were used to compare the management improvement scenarios. Results showed that fire has major repercussions on forest income, but these impacts can be minimized. Intensifying forest management and implementing the first priority FBN segments originated substantial improvements in financial outcome from timber production, close to those obtained for the full FBN implementation. Results also evidenced contrasting contributions from industrial and non-industrial owners with the later evidencing unbalanced cash-flows derailing the possibility for interesting forest incomes. The coupling of fire and forest growth simulations can be an interesting approach to assess the impact of different management and policy scenarios and inform policies
id RCAP_0821e0d34a120e8e2e78e77c101391d6
oai_identifier_str oai:www.repository.utl.pt:10400.5/22563
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Combining landscape fire simulations with stand-level growth simulations to assist landowners in building wildfire-resilient landscapesforest growth simulationsforest managementwildfireeconomic analysislandowner typesThe wildfire regime in Portugal has been responsible for millions of hectares of burnt area, and Alvares parish is no exception. In 2017, a severe wildfire burnt 60% of its area. Land abandonment has been increasing since the mid 20th century, and a large fraction of the forest area belongs to quasi-absent landowners. This has given rise to large, almost unbroken expanses of undermanaged forests that, in combination with rugged topography, originates a landscape prone to large, intense wildfires. Thus, a change in landscape composition and structure capable of reducing flammability and promoting fuel discontinuity is urgently needed. A fire spread simulator and a forest growth simulator were combined to show the impact of improving management at landscape level. It was assumed that the probability of large wildfires may be reduced by setting aside forest area for the implementation of a fuel break network (FBN) and increasing the area under sustainable forest management. Three levels of management intensity were simulated by restricting the area of Quasi-absent non-industrial owners to 34.5%, 20.1%, and 8.5% of the Alvares forest area, in favor of increasing the area of active and semi-active non-industrial owners (current, moderate, and high management scenarios). Different FBN extents, representing four levels of network implementation priority were combined with the management levels, resulting in 12 scenarios. To evaluate the impact of fire, simulations assuming no-fire, no-FBN, and current management intensity were performed, whereas the impact of operation costs was assessed assuming reduced costs for silvicultural operations. Per hectare simulations were then scaled up to the parish level and volume harvested and net present values were used to compare the management improvement scenarios. Results showed that fire has major repercussions on forest income, but these impacts can be minimized. Intensifying forest management and implementing the first priority FBN segments originated substantial improvements in financial outcome from timber production, close to those obtained for the full FBN implementation. Results also evidenced contrasting contributions from industrial and non-industrial owners with the later evidencing unbalanced cash-flows derailing the possibility for interesting forest incomes. The coupling of fire and forest growth simulations can be an interesting approach to assess the impact of different management and policy scenarios and inform policiesMDPIRepositório da Universidade de LisboaBarreiro, SusanaBenali, AkliRua, João C.P.Tomé, MargaridaSantos, José L.Pereira, José M.C.2021-11-23T16:39:03Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/22563engBarreiro, S.; Benali, A.; Rua, J.C.P.; Tomé, M.; Santos, J.L.; Pereira, J.M.C. Combining Landscape Fire Simulations with Stand-Level Growth Simulations to Assist Landowners in Building Wildfire-Resilient Landscapes. Forests 2021, 12, 1498https://doi.org/10.3390/ f12111498info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-06T14:52:05Zoai:www.repository.utl.pt:10400.5/22563Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:06:57.759452Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Combining landscape fire simulations with stand-level growth simulations to assist landowners in building wildfire-resilient landscapes
title Combining landscape fire simulations with stand-level growth simulations to assist landowners in building wildfire-resilient landscapes
spellingShingle Combining landscape fire simulations with stand-level growth simulations to assist landowners in building wildfire-resilient landscapes
Barreiro, Susana
forest growth simulations
forest management
wildfire
economic analysis
landowner types
title_short Combining landscape fire simulations with stand-level growth simulations to assist landowners in building wildfire-resilient landscapes
title_full Combining landscape fire simulations with stand-level growth simulations to assist landowners in building wildfire-resilient landscapes
title_fullStr Combining landscape fire simulations with stand-level growth simulations to assist landowners in building wildfire-resilient landscapes
title_full_unstemmed Combining landscape fire simulations with stand-level growth simulations to assist landowners in building wildfire-resilient landscapes
title_sort Combining landscape fire simulations with stand-level growth simulations to assist landowners in building wildfire-resilient landscapes
author Barreiro, Susana
author_facet Barreiro, Susana
Benali, Akli
Rua, João C.P.
Tomé, Margarida
Santos, José L.
Pereira, José M.C.
author_role author
author2 Benali, Akli
Rua, João C.P.
Tomé, Margarida
Santos, José L.
Pereira, José M.C.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Barreiro, Susana
Benali, Akli
Rua, João C.P.
Tomé, Margarida
Santos, José L.
Pereira, José M.C.
dc.subject.por.fl_str_mv forest growth simulations
forest management
wildfire
economic analysis
landowner types
topic forest growth simulations
forest management
wildfire
economic analysis
landowner types
description The wildfire regime in Portugal has been responsible for millions of hectares of burnt area, and Alvares parish is no exception. In 2017, a severe wildfire burnt 60% of its area. Land abandonment has been increasing since the mid 20th century, and a large fraction of the forest area belongs to quasi-absent landowners. This has given rise to large, almost unbroken expanses of undermanaged forests that, in combination with rugged topography, originates a landscape prone to large, intense wildfires. Thus, a change in landscape composition and structure capable of reducing flammability and promoting fuel discontinuity is urgently needed. A fire spread simulator and a forest growth simulator were combined to show the impact of improving management at landscape level. It was assumed that the probability of large wildfires may be reduced by setting aside forest area for the implementation of a fuel break network (FBN) and increasing the area under sustainable forest management. Three levels of management intensity were simulated by restricting the area of Quasi-absent non-industrial owners to 34.5%, 20.1%, and 8.5% of the Alvares forest area, in favor of increasing the area of active and semi-active non-industrial owners (current, moderate, and high management scenarios). Different FBN extents, representing four levels of network implementation priority were combined with the management levels, resulting in 12 scenarios. To evaluate the impact of fire, simulations assuming no-fire, no-FBN, and current management intensity were performed, whereas the impact of operation costs was assessed assuming reduced costs for silvicultural operations. Per hectare simulations were then scaled up to the parish level and volume harvested and net present values were used to compare the management improvement scenarios. Results showed that fire has major repercussions on forest income, but these impacts can be minimized. Intensifying forest management and implementing the first priority FBN segments originated substantial improvements in financial outcome from timber production, close to those obtained for the full FBN implementation. Results also evidenced contrasting contributions from industrial and non-industrial owners with the later evidencing unbalanced cash-flows derailing the possibility for interesting forest incomes. The coupling of fire and forest growth simulations can be an interesting approach to assess the impact of different management and policy scenarios and inform policies
publishDate 2021
dc.date.none.fl_str_mv 2021-11-23T16:39:03Z
2021
2021-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.5/22563
url http://hdl.handle.net/10400.5/22563
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Barreiro, S.; Benali, A.; Rua, J.C.P.; Tomé, M.; Santos, J.L.; Pereira, J.M.C. Combining Landscape Fire Simulations with Stand-Level Growth Simulations to Assist Landowners in Building Wildfire-Resilient Landscapes. Forests 2021, 12, 1498
https://doi.org/10.3390/ f12111498
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131162922188800