Statically analyzing the energy efficiency of software product lines

Detalhes bibliográficos
Autor(a) principal: Couto, Marco
Data de Publicação: 2021
Outros Autores: Fernandes, João Paulo, Saraiva, João
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/72630
Resumo: Optimizing software to become (more) energy efficient is an important concern for the software industry. Although several techniques have been proposed to measure energy consumption within software engineering, little work has specifically addressed Software Product Lines (SPLs). SPLs are a widely used software development approach, where the core concept is to study the systematic development of products that can be deployed in a variable way, e.g., to include different features for different clients. The traditional approach for measuring energy consumption in SPLs is to generate and individually measure all products, which, given their large number, is impractical. We present a technique, implemented in a tool, to statically estimate the worst-case energy consumption for SPLs. The goal is to reason about energy consumption in all products of a SPL, without having to individually analyze each product. Our technique combines static analysis and worst-case prediction with energy consumption analysis, in order to analyze products in a feature-sensitive manner: a feature that is used in several products is analyzed only once, while the energy consumption is estimated once per product. This paper describes not only our previous work on worst-case prediction, for comprehensibility, but also a significant extension of such work. This extension has been realized in two different axis: firstly, we incorporated in our methodology a simulated annealing algorithm to improve our worst-case energy consumption estimation. Secondly, we evaluated our new approach in four real-world SPLs, containing a total of 99 software products. Our new results show that our technique is able to estimate the worst-case energy consumption with a mean error percentage of 17.3% and standard deviation of 11.2%.
id RCAP_08baaf24dda640771b49991606d90f9f
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/72630
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Statically analyzing the energy efficiency of software product linesEnergy estimationProgram analysisSoftware product linesScience & TechnologyOptimizing software to become (more) energy efficient is an important concern for the software industry. Although several techniques have been proposed to measure energy consumption within software engineering, little work has specifically addressed Software Product Lines (SPLs). SPLs are a widely used software development approach, where the core concept is to study the systematic development of products that can be deployed in a variable way, e.g., to include different features for different clients. The traditional approach for measuring energy consumption in SPLs is to generate and individually measure all products, which, given their large number, is impractical. We present a technique, implemented in a tool, to statically estimate the worst-case energy consumption for SPLs. The goal is to reason about energy consumption in all products of a SPL, without having to individually analyze each product. Our technique combines static analysis and worst-case prediction with energy consumption analysis, in order to analyze products in a feature-sensitive manner: a feature that is used in several products is analyzed only once, while the energy consumption is estimated once per product. This paper describes not only our previous work on worst-case prediction, for comprehensibility, but also a significant extension of such work. This extension has been realized in two different axis: firstly, we incorporated in our methodology a simulated annealing algorithm to improve our worst-case energy consumption estimation. Secondly, we evaluated our new approach in four real-world SPLs, containing a total of 99 software products. Our new results show that our technique is able to estimate the worst-case energy consumption with a mean error percentage of 17.3% and standard deviation of 11.2%.This paper acknowledges the support of the Erasmus+ Key Action 2 (Strategic partnership for higher education) project No. 2020-1-PT01-KA203-078646: SusTrainable-Promoting Sustainability as a Fundamental Driver in Software Development Training and Education.Multidisciplinary Digital Publishing Institute (MDPI)Universidade do MinhoCouto, MarcoFernandes, João PauloSaraiva, João2021-03-232021-03-23T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/72630engCouto, M.; Fernandes, J.P.; Saraiva, J. Statically Analyzing the Energy Efficiency of Software Product Lines. J. Low Power Electron. Appl. 2021, 11, 13. https://doi.org/10.3390/jlpea110100132079-926810.3390/jlpea11010013https://www.mdpi.com/2079-9268/11/1/13info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:24:48Zoai:repositorium.sdum.uminho.pt:1822/72630Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:18:53.483861Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Statically analyzing the energy efficiency of software product lines
title Statically analyzing the energy efficiency of software product lines
spellingShingle Statically analyzing the energy efficiency of software product lines
Couto, Marco
Energy estimation
Program analysis
Software product lines
Science & Technology
title_short Statically analyzing the energy efficiency of software product lines
title_full Statically analyzing the energy efficiency of software product lines
title_fullStr Statically analyzing the energy efficiency of software product lines
title_full_unstemmed Statically analyzing the energy efficiency of software product lines
title_sort Statically analyzing the energy efficiency of software product lines
author Couto, Marco
author_facet Couto, Marco
Fernandes, João Paulo
Saraiva, João
author_role author
author2 Fernandes, João Paulo
Saraiva, João
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Couto, Marco
Fernandes, João Paulo
Saraiva, João
dc.subject.por.fl_str_mv Energy estimation
Program analysis
Software product lines
Science & Technology
topic Energy estimation
Program analysis
Software product lines
Science & Technology
description Optimizing software to become (more) energy efficient is an important concern for the software industry. Although several techniques have been proposed to measure energy consumption within software engineering, little work has specifically addressed Software Product Lines (SPLs). SPLs are a widely used software development approach, where the core concept is to study the systematic development of products that can be deployed in a variable way, e.g., to include different features for different clients. The traditional approach for measuring energy consumption in SPLs is to generate and individually measure all products, which, given their large number, is impractical. We present a technique, implemented in a tool, to statically estimate the worst-case energy consumption for SPLs. The goal is to reason about energy consumption in all products of a SPL, without having to individually analyze each product. Our technique combines static analysis and worst-case prediction with energy consumption analysis, in order to analyze products in a feature-sensitive manner: a feature that is used in several products is analyzed only once, while the energy consumption is estimated once per product. This paper describes not only our previous work on worst-case prediction, for comprehensibility, but also a significant extension of such work. This extension has been realized in two different axis: firstly, we incorporated in our methodology a simulated annealing algorithm to improve our worst-case energy consumption estimation. Secondly, we evaluated our new approach in four real-world SPLs, containing a total of 99 software products. Our new results show that our technique is able to estimate the worst-case energy consumption with a mean error percentage of 17.3% and standard deviation of 11.2%.
publishDate 2021
dc.date.none.fl_str_mv 2021-03-23
2021-03-23T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/72630
url http://hdl.handle.net/1822/72630
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Couto, M.; Fernandes, J.P.; Saraiva, J. Statically Analyzing the Energy Efficiency of Software Product Lines. J. Low Power Electron. Appl. 2021, 11, 13. https://doi.org/10.3390/jlpea11010013
2079-9268
10.3390/jlpea11010013
https://www.mdpi.com/2079-9268/11/1/13
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132644923932672