Development of MWCNT/Magnetite flexible triboelectric sensors by magnetic patterning

Detalhes bibliográficos
Autor(a) principal: Esteves, David Seixas
Data de Publicação: 2023
Outros Autores: Pereira, Manuel F. C., Ribeiro, Ana, Durães, Nelson, Paiva, Maria C., Sequeiros, Elsa W.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/86972
Resumo: The fabrication of low-electrical-percolation-threshold polymer composites aims to reduce the weight fraction of the conductive nanomaterial necessary to achieve a given level of electrical resistivity of the composite. The present work aimed at preparing composites based on multiwalled carbon nanotubes (MWCNTs) and magnetite particles in a polyurethane (PU) matrix to study the effect on the electrical resistance of electrodes produced under magnetic fields. Composites with 1 wt.% of MWCNT, 1 wt.% of magnetite and combinations of both were prepared and analysed. The hybrid composites combined MWCNTs and magnetite at the weight ratios of 1:1; 1:1/6; 1:1/12; and 1:1/24. The results showed that MWCNTs were responsible for the electrical conductivity of the composites since the composites with 1 wt.% magnetite were non-conductive. Combining magnetite particles with MWCNTs reduces the electrical resistance of the composite. SQUID analysis showed that MWCNTs simultaneously exhibit ferromagnetism and diamagnetism, ferromagnetism being dominant at lower magnetic fields and diamagnetism being dominant at higher fields. Conversely, magnetite particles present a ferromagnetic response much stronger than MWCNTs. Finally, optical microscopy (OM) and X-ray micro computed tomography (micro CT) identified the interaction between particles and their location inside the composite. In conclusion, the combination of magnetite and MWCNTs in a polymer composite allows for the control of the location of these particles using an external magnetic field, decreasing the electrical resistance of the electrodes produced. By adding 1 wt.% of magnetite to 1 wt.% of MWCNT (1:1), the electric resistance of the composites decreased from 9 × 104 to 5 × 103 Ω. This approach significantly improved the reproducibility of the electrode’s fabrication process, enabling the development of a triboelectric sensor using a polyurethane (PU) composite and silicone rubber (SR). Finally, the method’s bearing was demonstrated by developing an automated robotic soft grip with tendon-driven actuation controlled by the triboelectric sensor. The results indicate that magnetic patterning is a versatile and low-cost approach to manufacturing sensors for soft robotics.
id RCAP_090b2ea506645c70aa53598487224c8e
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/86972
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Development of MWCNT/Magnetite flexible triboelectric sensors by magnetic patterningMWCNTFerromagneticFlexible and stretchable sensorsSmart compositesSensor fabricationPolymer compositesPolymer actuatorsSoft roboticsThe fabrication of low-electrical-percolation-threshold polymer composites aims to reduce the weight fraction of the conductive nanomaterial necessary to achieve a given level of electrical resistivity of the composite. The present work aimed at preparing composites based on multiwalled carbon nanotubes (MWCNTs) and magnetite particles in a polyurethane (PU) matrix to study the effect on the electrical resistance of electrodes produced under magnetic fields. Composites with 1 wt.% of MWCNT, 1 wt.% of magnetite and combinations of both were prepared and analysed. The hybrid composites combined MWCNTs and magnetite at the weight ratios of 1:1; 1:1/6; 1:1/12; and 1:1/24. The results showed that MWCNTs were responsible for the electrical conductivity of the composites since the composites with 1 wt.% magnetite were non-conductive. Combining magnetite particles with MWCNTs reduces the electrical resistance of the composite. SQUID analysis showed that MWCNTs simultaneously exhibit ferromagnetism and diamagnetism, ferromagnetism being dominant at lower magnetic fields and diamagnetism being dominant at higher fields. Conversely, magnetite particles present a ferromagnetic response much stronger than MWCNTs. Finally, optical microscopy (OM) and X-ray micro computed tomography (micro CT) identified the interaction between particles and their location inside the composite. In conclusion, the combination of magnetite and MWCNTs in a polymer composite allows for the control of the location of these particles using an external magnetic field, decreasing the electrical resistance of the electrodes produced. By adding 1 wt.% of magnetite to 1 wt.% of MWCNT (1:1), the electric resistance of the composites decreased from 9 × 104 to 5 × 103 Ω. This approach significantly improved the reproducibility of the electrode’s fabrication process, enabling the development of a triboelectric sensor using a polyurethane (PU) composite and silicone rubber (SR). Finally, the method’s bearing was demonstrated by developing an automated robotic soft grip with tendon-driven actuation controlled by the triboelectric sensor. The results indicate that magnetic patterning is a versatile and low-cost approach to manufacturing sensors for soft robotics.This research is part of the PhD project at the Doctoral Program in Advanced Materials and Processing—FEUP. We want to thank CeNTI for providing resources (labs, equipment and consumables) to perform the fabrication and characterisation of the samples. IPC acknowledges the support of the Portuguese Foundation for Science and Technology (FCT) through the National Funds Reference UIDB/05256/2020 and UIDP/05256/2020. This work was also supported by LAETA/INEGI—Associate Laboratory in Energy, Transport and Aeronautics/Institute of Science and Innovation in Mechanical and Industrial Engineering and by the strategic project CERENA—UID/ECI/04028/2019.Multidisciplinary Digital Publishing Institute (MDPI)Universidade do MinhoEsteves, David SeixasPereira, Manuel F. C.Ribeiro, AnaDurães, NelsonPaiva, Maria C.Sequeiros, Elsa W.2023-06-292023-06-29T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/86972engEsteves, D.S.; Pereira, M.F.C.; Ribeiro, A.; Durães, N.; Paiva, M.C.; Sequeiros, E.W. Development of MWCNT/Magnetite Flexible Triboelectric Sensors by Magnetic Patterning. Polymers 2023, 15, 2870. https://doi.org/10.3390/polym151328702073-436010.3390/polym15132870https://www.mdpi.com/2073-4360/15/13/2870info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-21T01:26:35Zoai:repositorium.sdum.uminho.pt:1822/86972Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:39:01.688426Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Development of MWCNT/Magnetite flexible triboelectric sensors by magnetic patterning
title Development of MWCNT/Magnetite flexible triboelectric sensors by magnetic patterning
spellingShingle Development of MWCNT/Magnetite flexible triboelectric sensors by magnetic patterning
Esteves, David Seixas
MWCNT
Ferromagnetic
Flexible and stretchable sensors
Smart composites
Sensor fabrication
Polymer composites
Polymer actuators
Soft robotics
title_short Development of MWCNT/Magnetite flexible triboelectric sensors by magnetic patterning
title_full Development of MWCNT/Magnetite flexible triboelectric sensors by magnetic patterning
title_fullStr Development of MWCNT/Magnetite flexible triboelectric sensors by magnetic patterning
title_full_unstemmed Development of MWCNT/Magnetite flexible triboelectric sensors by magnetic patterning
title_sort Development of MWCNT/Magnetite flexible triboelectric sensors by magnetic patterning
author Esteves, David Seixas
author_facet Esteves, David Seixas
Pereira, Manuel F. C.
Ribeiro, Ana
Durães, Nelson
Paiva, Maria C.
Sequeiros, Elsa W.
author_role author
author2 Pereira, Manuel F. C.
Ribeiro, Ana
Durães, Nelson
Paiva, Maria C.
Sequeiros, Elsa W.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Esteves, David Seixas
Pereira, Manuel F. C.
Ribeiro, Ana
Durães, Nelson
Paiva, Maria C.
Sequeiros, Elsa W.
dc.subject.por.fl_str_mv MWCNT
Ferromagnetic
Flexible and stretchable sensors
Smart composites
Sensor fabrication
Polymer composites
Polymer actuators
Soft robotics
topic MWCNT
Ferromagnetic
Flexible and stretchable sensors
Smart composites
Sensor fabrication
Polymer composites
Polymer actuators
Soft robotics
description The fabrication of low-electrical-percolation-threshold polymer composites aims to reduce the weight fraction of the conductive nanomaterial necessary to achieve a given level of electrical resistivity of the composite. The present work aimed at preparing composites based on multiwalled carbon nanotubes (MWCNTs) and magnetite particles in a polyurethane (PU) matrix to study the effect on the electrical resistance of electrodes produced under magnetic fields. Composites with 1 wt.% of MWCNT, 1 wt.% of magnetite and combinations of both were prepared and analysed. The hybrid composites combined MWCNTs and magnetite at the weight ratios of 1:1; 1:1/6; 1:1/12; and 1:1/24. The results showed that MWCNTs were responsible for the electrical conductivity of the composites since the composites with 1 wt.% magnetite were non-conductive. Combining magnetite particles with MWCNTs reduces the electrical resistance of the composite. SQUID analysis showed that MWCNTs simultaneously exhibit ferromagnetism and diamagnetism, ferromagnetism being dominant at lower magnetic fields and diamagnetism being dominant at higher fields. Conversely, magnetite particles present a ferromagnetic response much stronger than MWCNTs. Finally, optical microscopy (OM) and X-ray micro computed tomography (micro CT) identified the interaction between particles and their location inside the composite. In conclusion, the combination of magnetite and MWCNTs in a polymer composite allows for the control of the location of these particles using an external magnetic field, decreasing the electrical resistance of the electrodes produced. By adding 1 wt.% of magnetite to 1 wt.% of MWCNT (1:1), the electric resistance of the composites decreased from 9 × 104 to 5 × 103 Ω. This approach significantly improved the reproducibility of the electrode’s fabrication process, enabling the development of a triboelectric sensor using a polyurethane (PU) composite and silicone rubber (SR). Finally, the method’s bearing was demonstrated by developing an automated robotic soft grip with tendon-driven actuation controlled by the triboelectric sensor. The results indicate that magnetic patterning is a versatile and low-cost approach to manufacturing sensors for soft robotics.
publishDate 2023
dc.date.none.fl_str_mv 2023-06-29
2023-06-29T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/86972
url https://hdl.handle.net/1822/86972
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Esteves, D.S.; Pereira, M.F.C.; Ribeiro, A.; Durães, N.; Paiva, M.C.; Sequeiros, E.W. Development of MWCNT/Magnetite Flexible Triboelectric Sensors by Magnetic Patterning. Polymers 2023, 15, 2870. https://doi.org/10.3390/polym15132870
2073-4360
10.3390/polym15132870
https://www.mdpi.com/2073-4360/15/13/2870
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133650341593088