Automatic Reporting of TBI Lesion Location in CT based on Deep Learning and Atlas Mapping
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/56113 |
Resumo: | Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Biofísica Médica e Fisiologia de Sistemas), 2021, Universidade de Lisboa, Faculdade de Ciências |
id |
RCAP_0977803f8846d507f330c19648e166da |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/56113 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Automatic Reporting of TBI Lesion Location in CT based on Deep Learning and Atlas Mappinglesão cerebral traumáticatomografia computorizadalocalização de lesãosegmentação de lesãoTeses de mestrado - 2021Departamento de FísicaTese de mestrado integrado, Engenharia Biomédica e Biofísica (Biofísica Médica e Fisiologia de Sistemas), 2021, Universidade de Lisboa, Faculdade de CiênciasThe assessment of Computed Tomography (CT) scans for Traumatic Brain Injury (TBI) management remains a time consuming and challenging task for physicians. Computational methods for quantitative lesion segmentation and localisation may increase consistency in diagnosis and prognosis criteria. Our goal was to develop a registration-based tool to accurately localise several lesion classes (i.e., calculate the volume of lesion per brain region), as an extension of the Brain Lesion Analysis and Segmentation Tool for CT (BLAST-CT). Lesions were located by projecting a Magnetic Resonance Imaging (MRI) labelled atlas from the Montreal Neurological Institute (MNI MRI atlas) to a lesion map in native space. We created a CT template to work as an intermediate step between the two imaging spaces, using 182 non-lesioned CT scans and an unbiased iterative registration approach. We then non-linearly registered the parcellated atlas to the CT template, subsequently registering (affine) the result to native space. From the final atlas alignment, it was possible to calculate the volume of each lesion class per brain region. This pipeline was validated on a multi-centre dataset (n=839 scans), and defined three methods to flag any scans that presented sub-optimal results. The first one was based on the similarity metric of the registration of every scan to the study-specific CT template, the second aimed to identify any scans with regions that were completely collapsed post registration, and the final one identified scans with a significant volume of intra-ventricular haemorrhage outside of the ventricles. Additionally, an assessment of lesion prevalence and of the false negative and false positive rates of the algorithm, per anatomical region, was conducted, along with a bias assessment of the BLAST-CT tool. Our results show that the constructed pipeline is able to successfully localise TBI lesions across the whole brain, although without voxel-wise accuracy. We found the error rates calculated for each brain region to be inversely correlated with the lesion volume within that region. No considerable bias was identified on BLAST-CT, as all the significant correlation coefficients calculated between the Dice scores and clinical variables (i.e., age, Glasgow Coma Scale, Extended Glasgow Outcome Scale and Injury Severity Score) were below 0.2. Our results also suggest that the variation in DSC between male and female patients within a specific age range was caused by the discrepancy in lesion volume presented by the scans included in each sample.Glocker, BenConceição, RaquelRepositório da Universidade de LisboaPiçarra, Carolina2023-02-02T09:46:51Z202120212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10451/56113TID:202934799enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T17:03:30Zoai:repositorio.ul.pt:10451/56113Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:06:39.867215Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Automatic Reporting of TBI Lesion Location in CT based on Deep Learning and Atlas Mapping |
title |
Automatic Reporting of TBI Lesion Location in CT based on Deep Learning and Atlas Mapping |
spellingShingle |
Automatic Reporting of TBI Lesion Location in CT based on Deep Learning and Atlas Mapping Piçarra, Carolina lesão cerebral traumática tomografia computorizada localização de lesão segmentação de lesão Teses de mestrado - 2021 Departamento de Física |
title_short |
Automatic Reporting of TBI Lesion Location in CT based on Deep Learning and Atlas Mapping |
title_full |
Automatic Reporting of TBI Lesion Location in CT based on Deep Learning and Atlas Mapping |
title_fullStr |
Automatic Reporting of TBI Lesion Location in CT based on Deep Learning and Atlas Mapping |
title_full_unstemmed |
Automatic Reporting of TBI Lesion Location in CT based on Deep Learning and Atlas Mapping |
title_sort |
Automatic Reporting of TBI Lesion Location in CT based on Deep Learning and Atlas Mapping |
author |
Piçarra, Carolina |
author_facet |
Piçarra, Carolina |
author_role |
author |
dc.contributor.none.fl_str_mv |
Glocker, Ben Conceição, Raquel Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Piçarra, Carolina |
dc.subject.por.fl_str_mv |
lesão cerebral traumática tomografia computorizada localização de lesão segmentação de lesão Teses de mestrado - 2021 Departamento de Física |
topic |
lesão cerebral traumática tomografia computorizada localização de lesão segmentação de lesão Teses de mestrado - 2021 Departamento de Física |
description |
Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Biofísica Médica e Fisiologia de Sistemas), 2021, Universidade de Lisboa, Faculdade de Ciências |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021 2021-01-01T00:00:00Z 2023-02-02T09:46:51Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/56113 TID:202934799 |
url |
http://hdl.handle.net/10451/56113 |
identifier_str_mv |
TID:202934799 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134619959820288 |