A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues

Detalhes bibliográficos
Autor(a) principal: Rocha, Ana Maria A. C.
Data de Publicação: 2014
Outros Autores: Costa, M. Fernanda P., Fernandes, Edite Manuela da G. P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/30773
Resumo: This paper presents a filter-based artificial fish swarm algorithm for solving non- convex constrained global optimization problems. Convergence to an ε-global minimizer is guaranteed. At each iteration k, the algorithm requires a (ρ(k),ε(k))-global minimizer of a bound constrained bi-objective subproblem,where as k →∞ ,ρ(k) →0 gives the constraint violation tolerance and ε(k) → ε is the error bound defining the accuracy required for the solution.The subproblems are solved by a population-based heuristic known as artificial fish swarm algorithm. Each subproblem relies on the approximate solution of the previous one, randomly generated new points to explore the search space for a global solution, and the filter methodology to accept non-dominated trial points.Convergence to a (ρ(k),ε(k))-global minimizer with probability one is guaranteed by probability theory. Preliminary numeri- cal experiments show that the algorithm is very competitive when compared with known deterministic and stochastic methods.
id RCAP_099be07cf52d4f2b41c1e6ca55fa1271
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/30773
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issuesGlobal optimizationArtificial fish swarmFilter methodStochastic convergenceArtificial fish swarmEngenharia e Tecnologia::Outras Engenharias e TecnologiasScience & TechnologyThis paper presents a filter-based artificial fish swarm algorithm for solving non- convex constrained global optimization problems. Convergence to an ε-global minimizer is guaranteed. At each iteration k, the algorithm requires a (ρ(k),ε(k))-global minimizer of a bound constrained bi-objective subproblem,where as k →∞ ,ρ(k) →0 gives the constraint violation tolerance and ε(k) → ε is the error bound defining the accuracy required for the solution.The subproblems are solved by a population-based heuristic known as artificial fish swarm algorithm. Each subproblem relies on the approximate solution of the previous one, randomly generated new points to explore the search space for a global solution, and the filter methodology to accept non-dominated trial points.Convergence to a (ρ(k),ε(k))-global minimizer with probability one is guaranteed by probability theory. Preliminary numeri- cal experiments show that the algorithm is very competitive when compared with known deterministic and stochastic methods.Fundação para a Ciência e a Tecnologia (FCT)SpringerUniversidade do MinhoRocha, Ana Maria A. C.Costa, M. Fernanda P.Fernandes, Edite Manuela da G. P.20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/30773engRocha, Ana Maria A. C., Costa, M. Fernanda P., and Fernandes, Edite M. G. P. (2014). A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues. Journal of Global Optimization, 1-25.1573-291610.1007/s10898-014-0157-3http://link.springer.com/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:40:09Zoai:repositorium.sdum.uminho.pt:1822/30773Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:36:53.628023Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues
title A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues
spellingShingle A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues
Rocha, Ana Maria A. C.
Global optimization
Artificial fish swarm
Filter method
Stochastic convergence
Artificial fish swarm
Engenharia e Tecnologia::Outras Engenharias e Tecnologias
Science & Technology
title_short A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues
title_full A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues
title_fullStr A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues
title_full_unstemmed A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues
title_sort A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues
author Rocha, Ana Maria A. C.
author_facet Rocha, Ana Maria A. C.
Costa, M. Fernanda P.
Fernandes, Edite Manuela da G. P.
author_role author
author2 Costa, M. Fernanda P.
Fernandes, Edite Manuela da G. P.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Rocha, Ana Maria A. C.
Costa, M. Fernanda P.
Fernandes, Edite Manuela da G. P.
dc.subject.por.fl_str_mv Global optimization
Artificial fish swarm
Filter method
Stochastic convergence
Artificial fish swarm
Engenharia e Tecnologia::Outras Engenharias e Tecnologias
Science & Technology
topic Global optimization
Artificial fish swarm
Filter method
Stochastic convergence
Artificial fish swarm
Engenharia e Tecnologia::Outras Engenharias e Tecnologias
Science & Technology
description This paper presents a filter-based artificial fish swarm algorithm for solving non- convex constrained global optimization problems. Convergence to an ε-global minimizer is guaranteed. At each iteration k, the algorithm requires a (ρ(k),ε(k))-global minimizer of a bound constrained bi-objective subproblem,where as k →∞ ,ρ(k) →0 gives the constraint violation tolerance and ε(k) → ε is the error bound defining the accuracy required for the solution.The subproblems are solved by a population-based heuristic known as artificial fish swarm algorithm. Each subproblem relies on the approximate solution of the previous one, randomly generated new points to explore the search space for a global solution, and the filter methodology to accept non-dominated trial points.Convergence to a (ρ(k),ε(k))-global minimizer with probability one is guaranteed by probability theory. Preliminary numeri- cal experiments show that the algorithm is very competitive when compared with known deterministic and stochastic methods.
publishDate 2014
dc.date.none.fl_str_mv 2014
2014-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/30773
url http://hdl.handle.net/1822/30773
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Rocha, Ana Maria A. C., Costa, M. Fernanda P., and Fernandes, Edite M. G. P. (2014). A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues. Journal of Global Optimization, 1-25.
1573-2916
10.1007/s10898-014-0157-3
http://link.springer.com/
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132899933421568