A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/30773 |
Resumo: | This paper presents a filter-based artificial fish swarm algorithm for solving non- convex constrained global optimization problems. Convergence to an ε-global minimizer is guaranteed. At each iteration k, the algorithm requires a (ρ(k),ε(k))-global minimizer of a bound constrained bi-objective subproblem,where as k →∞ ,ρ(k) →0 gives the constraint violation tolerance and ε(k) → ε is the error bound defining the accuracy required for the solution.The subproblems are solved by a population-based heuristic known as artificial fish swarm algorithm. Each subproblem relies on the approximate solution of the previous one, randomly generated new points to explore the search space for a global solution, and the filter methodology to accept non-dominated trial points.Convergence to a (ρ(k),ε(k))-global minimizer with probability one is guaranteed by probability theory. Preliminary numeri- cal experiments show that the algorithm is very competitive when compared with known deterministic and stochastic methods. |
id |
RCAP_099be07cf52d4f2b41c1e6ca55fa1271 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/30773 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issuesGlobal optimizationArtificial fish swarmFilter methodStochastic convergenceArtificial fish swarmEngenharia e Tecnologia::Outras Engenharias e TecnologiasScience & TechnologyThis paper presents a filter-based artificial fish swarm algorithm for solving non- convex constrained global optimization problems. Convergence to an ε-global minimizer is guaranteed. At each iteration k, the algorithm requires a (ρ(k),ε(k))-global minimizer of a bound constrained bi-objective subproblem,where as k →∞ ,ρ(k) →0 gives the constraint violation tolerance and ε(k) → ε is the error bound defining the accuracy required for the solution.The subproblems are solved by a population-based heuristic known as artificial fish swarm algorithm. Each subproblem relies on the approximate solution of the previous one, randomly generated new points to explore the search space for a global solution, and the filter methodology to accept non-dominated trial points.Convergence to a (ρ(k),ε(k))-global minimizer with probability one is guaranteed by probability theory. Preliminary numeri- cal experiments show that the algorithm is very competitive when compared with known deterministic and stochastic methods.Fundação para a Ciência e a Tecnologia (FCT)SpringerUniversidade do MinhoRocha, Ana Maria A. C.Costa, M. Fernanda P.Fernandes, Edite Manuela da G. P.20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/30773engRocha, Ana Maria A. C., Costa, M. Fernanda P., and Fernandes, Edite M. G. P. (2014). A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues. Journal of Global Optimization, 1-25.1573-291610.1007/s10898-014-0157-3http://link.springer.com/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:40:09Zoai:repositorium.sdum.uminho.pt:1822/30773Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:36:53.628023Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues |
title |
A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues |
spellingShingle |
A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues Rocha, Ana Maria A. C. Global optimization Artificial fish swarm Filter method Stochastic convergence Artificial fish swarm Engenharia e Tecnologia::Outras Engenharias e Tecnologias Science & Technology |
title_short |
A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues |
title_full |
A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues |
title_fullStr |
A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues |
title_full_unstemmed |
A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues |
title_sort |
A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues |
author |
Rocha, Ana Maria A. C. |
author_facet |
Rocha, Ana Maria A. C. Costa, M. Fernanda P. Fernandes, Edite Manuela da G. P. |
author_role |
author |
author2 |
Costa, M. Fernanda P. Fernandes, Edite Manuela da G. P. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Rocha, Ana Maria A. C. Costa, M. Fernanda P. Fernandes, Edite Manuela da G. P. |
dc.subject.por.fl_str_mv |
Global optimization Artificial fish swarm Filter method Stochastic convergence Artificial fish swarm Engenharia e Tecnologia::Outras Engenharias e Tecnologias Science & Technology |
topic |
Global optimization Artificial fish swarm Filter method Stochastic convergence Artificial fish swarm Engenharia e Tecnologia::Outras Engenharias e Tecnologias Science & Technology |
description |
This paper presents a filter-based artificial fish swarm algorithm for solving non- convex constrained global optimization problems. Convergence to an ε-global minimizer is guaranteed. At each iteration k, the algorithm requires a (ρ(k),ε(k))-global minimizer of a bound constrained bi-objective subproblem,where as k →∞ ,ρ(k) →0 gives the constraint violation tolerance and ε(k) → ε is the error bound defining the accuracy required for the solution.The subproblems are solved by a population-based heuristic known as artificial fish swarm algorithm. Each subproblem relies on the approximate solution of the previous one, randomly generated new points to explore the search space for a global solution, and the filter methodology to accept non-dominated trial points.Convergence to a (ρ(k),ε(k))-global minimizer with probability one is guaranteed by probability theory. Preliminary numeri- cal experiments show that the algorithm is very competitive when compared with known deterministic and stochastic methods. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2014-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/30773 |
url |
http://hdl.handle.net/1822/30773 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Rocha, Ana Maria A. C., Costa, M. Fernanda P., and Fernandes, Edite M. G. P. (2014). A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues. Journal of Global Optimization, 1-25. 1573-2916 10.1007/s10898-014-0157-3 http://link.springer.com/ |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132899933421568 |