Evaluation of future climate change impacts on semi-arid Cobres basin in southern Portugal

Detalhes bibliográficos
Autor(a) principal: Zhang, Rong
Data de Publicação: 2014
Outros Autores: Corte-Real, João, Moreira, Madalena, Kilsby, Chris, Burton, Aidan, Blenkinsop, Stephen, Forsythe, Nathan, Nunes, João, Sampaio, Elsa
Tipo de documento: Artigo de conferência
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/17147
Resumo: This study evaluated future climate change impacts on hydrological and sediment transport processes for the medium-sized (705 km2) agriculture dominated Cobres basin, Portugal, in the context of anti-desertification strategies. We used the Spatial-Temporal Neyman-Scott Rectangular Pulses (STNSRP) model—RainSim V3, a rainfall conditioned weather generator—ICAAM-WG, developed in this study but based on the modified Climate Research Unit daily weather generator (CRU-WG), and a PBSD hydrological model—SHETRAN, to downscale projections of change. Climate projections were derived from the RCM HadRM3Q0 output, provided by the ENSEMBLES project, for the SRES A1B scenario for the period 2041–2070. The RainSim V3 and ICAAM-WG models are demonstrated to be able to reproduce observed climatology for the period 1981–2010. The SHETRAN model reproduces hourly runoff with Nash-Sutcliffe Efficiency (NSE) of 0.86 for calibration (2004–2006) and 0.74 for validation (2006–2008) for basin outlet; it reproduces hourly sediment discharge with NSE of 0.48 for the storm from October 23rd 2006 to October 27th 2006. We found that future mean climate is drier, with mean annual rainfall decreased by 88 mm (19%), mean annual PET increased 196 mm (16%) and consequent mean annual runoff and sediment yield decreased respectively 48 mm (50%) and 1.06 t/ha/year (45%). The future mean annual AET decreases 41 mm (11%), which occurs mainly in spring indicating a more water-limited future climate for vegetation and crop growth. Under current conditions, November to February is the period in which runoff and sediment yield occur frequently; however, it is reduced to December to January in future, with changes in the occurrence rate of 50%. On the other hand, future wet extremes are more right-skewed. Future annual maximum discharge and sediment discharge decrease for extremes with return periods (T) less than 20 years and the decreases are especially greater for those with T less than 2 years; besides, both quantities present the same or slightly lower magnitudes as those with T larger than 20 years. The annual maximum discharge (sediment discharge) series, under control climate, follows the GEV distribution with location parameter of 64.6 m3/s (164.4 kg/s), scale parameter of 46.5 m3/s (120.3 kg/s) and shape parameter of 0.09 (-0.24); under future climate, the annual maximum discharge series follows the gamma distribution with scale parameter of 75.2 m3/s and shape parameter of 0.97 and the annual maximum sediment discharge series follows the three-parameter lognormal distribution with location parameter of -46.2 kg/s, mean of 5.3 kg/s and standard deviation of 0.78. This study has confirmed the increasing concerns of water scarcity and drought problems in southern Portugal; but it also indicated the mitigation of sediment transport for most of time in the future except heavy events. However, the results should be interpreted carefully since we did not consider possible changes of land-use in the future, as well as the climate and hydrological modelling uncertainties.
id RCAP_099fed443b701d498fb0b77c34641f6b
oai_identifier_str oai:dspace.uevora.pt:10174/17147
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Evaluation of future climate change impacts on semi-arid Cobres basin in southern PortugalThis study evaluated future climate change impacts on hydrological and sediment transport processes for the medium-sized (705 km2) agriculture dominated Cobres basin, Portugal, in the context of anti-desertification strategies. We used the Spatial-Temporal Neyman-Scott Rectangular Pulses (STNSRP) model—RainSim V3, a rainfall conditioned weather generator—ICAAM-WG, developed in this study but based on the modified Climate Research Unit daily weather generator (CRU-WG), and a PBSD hydrological model—SHETRAN, to downscale projections of change. Climate projections were derived from the RCM HadRM3Q0 output, provided by the ENSEMBLES project, for the SRES A1B scenario for the period 2041–2070. The RainSim V3 and ICAAM-WG models are demonstrated to be able to reproduce observed climatology for the period 1981–2010. The SHETRAN model reproduces hourly runoff with Nash-Sutcliffe Efficiency (NSE) of 0.86 for calibration (2004–2006) and 0.74 for validation (2006–2008) for basin outlet; it reproduces hourly sediment discharge with NSE of 0.48 for the storm from October 23rd 2006 to October 27th 2006. We found that future mean climate is drier, with mean annual rainfall decreased by 88 mm (19%), mean annual PET increased 196 mm (16%) and consequent mean annual runoff and sediment yield decreased respectively 48 mm (50%) and 1.06 t/ha/year (45%). The future mean annual AET decreases 41 mm (11%), which occurs mainly in spring indicating a more water-limited future climate for vegetation and crop growth. Under current conditions, November to February is the period in which runoff and sediment yield occur frequently; however, it is reduced to December to January in future, with changes in the occurrence rate of 50%. On the other hand, future wet extremes are more right-skewed. Future annual maximum discharge and sediment discharge decrease for extremes with return periods (T) less than 20 years and the decreases are especially greater for those with T less than 2 years; besides, both quantities present the same or slightly lower magnitudes as those with T larger than 20 years. The annual maximum discharge (sediment discharge) series, under control climate, follows the GEV distribution with location parameter of 64.6 m3/s (164.4 kg/s), scale parameter of 46.5 m3/s (120.3 kg/s) and shape parameter of 0.09 (-0.24); under future climate, the annual maximum discharge series follows the gamma distribution with scale parameter of 75.2 m3/s and shape parameter of 0.97 and the annual maximum sediment discharge series follows the three-parameter lognormal distribution with location parameter of -46.2 kg/s, mean of 5.3 kg/s and standard deviation of 0.78. This study has confirmed the increasing concerns of water scarcity and drought problems in southern Portugal; but it also indicated the mitigation of sediment transport for most of time in the future except heavy events. However, the results should be interpreted carefully since we did not consider possible changes of land-use in the future, as well as the climate and hydrological modelling uncertainties.EGU General Assembly 20142016-01-29T18:00:07Z2016-01-292014-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://hdl.handle.net/10174/17147http://hdl.handle.net/10174/17147porRong Zhang, João Corte-Real, Madalena Moreira, Chris Kilsby, Aidan Burton, Stephen Blenkin, Nathan Forsythe, João Nunes and Elsa Sampaio, 2014. Evaluation of future climate change impacts on semi-arid Cobres basin in southern Portugal, Geophysical Research Abstracts Vol. 16, EGU2014-13711, Áustriahttp://meetingorganizer.copernicus.org/EGU2014/EGU2014-13711.pdfnaonaosimrzhang@uevora.ptjmcr@uevora.ptmmvmv@uevora.ptndndndndjpca@ua.ptems@uevora.pt247Zhang, RongCorte-Real, JoãoMoreira, MadalenaKilsby, ChrisBurton, AidanBlenkinsop, StephenForsythe, NathanNunes, JoãoSampaio, Elsainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:03:49Zoai:dspace.uevora.pt:10174/17147Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:09:04.294229Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Evaluation of future climate change impacts on semi-arid Cobres basin in southern Portugal
title Evaluation of future climate change impacts on semi-arid Cobres basin in southern Portugal
spellingShingle Evaluation of future climate change impacts on semi-arid Cobres basin in southern Portugal
Zhang, Rong
title_short Evaluation of future climate change impacts on semi-arid Cobres basin in southern Portugal
title_full Evaluation of future climate change impacts on semi-arid Cobres basin in southern Portugal
title_fullStr Evaluation of future climate change impacts on semi-arid Cobres basin in southern Portugal
title_full_unstemmed Evaluation of future climate change impacts on semi-arid Cobres basin in southern Portugal
title_sort Evaluation of future climate change impacts on semi-arid Cobres basin in southern Portugal
author Zhang, Rong
author_facet Zhang, Rong
Corte-Real, João
Moreira, Madalena
Kilsby, Chris
Burton, Aidan
Blenkinsop, Stephen
Forsythe, Nathan
Nunes, João
Sampaio, Elsa
author_role author
author2 Corte-Real, João
Moreira, Madalena
Kilsby, Chris
Burton, Aidan
Blenkinsop, Stephen
Forsythe, Nathan
Nunes, João
Sampaio, Elsa
author2_role author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Zhang, Rong
Corte-Real, João
Moreira, Madalena
Kilsby, Chris
Burton, Aidan
Blenkinsop, Stephen
Forsythe, Nathan
Nunes, João
Sampaio, Elsa
description This study evaluated future climate change impacts on hydrological and sediment transport processes for the medium-sized (705 km2) agriculture dominated Cobres basin, Portugal, in the context of anti-desertification strategies. We used the Spatial-Temporal Neyman-Scott Rectangular Pulses (STNSRP) model—RainSim V3, a rainfall conditioned weather generator—ICAAM-WG, developed in this study but based on the modified Climate Research Unit daily weather generator (CRU-WG), and a PBSD hydrological model—SHETRAN, to downscale projections of change. Climate projections were derived from the RCM HadRM3Q0 output, provided by the ENSEMBLES project, for the SRES A1B scenario for the period 2041–2070. The RainSim V3 and ICAAM-WG models are demonstrated to be able to reproduce observed climatology for the period 1981–2010. The SHETRAN model reproduces hourly runoff with Nash-Sutcliffe Efficiency (NSE) of 0.86 for calibration (2004–2006) and 0.74 for validation (2006–2008) for basin outlet; it reproduces hourly sediment discharge with NSE of 0.48 for the storm from October 23rd 2006 to October 27th 2006. We found that future mean climate is drier, with mean annual rainfall decreased by 88 mm (19%), mean annual PET increased 196 mm (16%) and consequent mean annual runoff and sediment yield decreased respectively 48 mm (50%) and 1.06 t/ha/year (45%). The future mean annual AET decreases 41 mm (11%), which occurs mainly in spring indicating a more water-limited future climate for vegetation and crop growth. Under current conditions, November to February is the period in which runoff and sediment yield occur frequently; however, it is reduced to December to January in future, with changes in the occurrence rate of 50%. On the other hand, future wet extremes are more right-skewed. Future annual maximum discharge and sediment discharge decrease for extremes with return periods (T) less than 20 years and the decreases are especially greater for those with T less than 2 years; besides, both quantities present the same or slightly lower magnitudes as those with T larger than 20 years. The annual maximum discharge (sediment discharge) series, under control climate, follows the GEV distribution with location parameter of 64.6 m3/s (164.4 kg/s), scale parameter of 46.5 m3/s (120.3 kg/s) and shape parameter of 0.09 (-0.24); under future climate, the annual maximum discharge series follows the gamma distribution with scale parameter of 75.2 m3/s and shape parameter of 0.97 and the annual maximum sediment discharge series follows the three-parameter lognormal distribution with location parameter of -46.2 kg/s, mean of 5.3 kg/s and standard deviation of 0.78. This study has confirmed the increasing concerns of water scarcity and drought problems in southern Portugal; but it also indicated the mitigation of sediment transport for most of time in the future except heavy events. However, the results should be interpreted carefully since we did not consider possible changes of land-use in the future, as well as the climate and hydrological modelling uncertainties.
publishDate 2014
dc.date.none.fl_str_mv 2014-04-01T00:00:00Z
2016-01-29T18:00:07Z
2016-01-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/17147
http://hdl.handle.net/10174/17147
url http://hdl.handle.net/10174/17147
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv Rong Zhang, João Corte-Real, Madalena Moreira, Chris Kilsby, Aidan Burton, Stephen Blenkin, Nathan Forsythe, João Nunes and Elsa Sampaio, 2014. Evaluation of future climate change impacts on semi-arid Cobres basin in southern Portugal, Geophysical Research Abstracts Vol. 16, EGU2014-13711, Áustria
http://meetingorganizer.copernicus.org/EGU2014/EGU2014-13711.pdf
nao
nao
sim
rzhang@uevora.pt
jmcr@uevora.pt
mmvmv@uevora.pt
nd
nd
nd
nd
jpca@ua.pt
ems@uevora.pt
247
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv EGU General Assembly 2014
publisher.none.fl_str_mv EGU General Assembly 2014
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136573235658752