Positive semidefinite rank

Detalhes bibliográficos
Autor(a) principal: Fawzi, Hamza
Data de Publicação: 2015
Outros Autores: Gouveia, João, Parrilo, Pablo A., Robinson, Richard Z., Thomas, Rekha R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/44191
https://doi.org/10.1007/s10107-015-0922-1
Resumo: Let M∈R^p×q be a nonnegative matrix. The positive semidefinite rank (psd rank) of M is the smallest integer k for which there exist positive semidefinite matrices A_i, B_j of size k × k such that M_ij = trace(A_i B_j). The psd rank has many appealing geometric interpretations, including semidefinite representations of polyhedra and information-theoretic applications. In this paper we develop and survey the main mathematical properties of psd rank, including its geometry, relationships with other rank notions, and computational and algorithmic aspects.
id RCAP_09ee5e0966b18c7cdbb8b4b49adc9589
oai_identifier_str oai:estudogeral.uc.pt:10316/44191
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Positive semidefinite rankLet M∈R^p×q be a nonnegative matrix. The positive semidefinite rank (psd rank) of M is the smallest integer k for which there exist positive semidefinite matrices A_i, B_j of size k × k such that M_ij = trace(A_i B_j). The psd rank has many appealing geometric interpretations, including semidefinite representations of polyhedra and information-theoretic applications. In this paper we develop and survey the main mathematical properties of psd rank, including its geometry, relationships with other rank notions, and computational and algorithmic aspects.Springer2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/44191http://hdl.handle.net/10316/44191https://doi.org/10.1007/s10107-015-0922-1https://doi.org/10.1007/s10107-015-0922-1enghttps://doi.org/10.1007/s10107-015-0922-1Fawzi, HamzaGouveia, JoãoParrilo, Pablo A.Robinson, Richard Z.Thomas, Rekha R.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-06-29T10:02:52Zoai:estudogeral.uc.pt:10316/44191Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:31.737969Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Positive semidefinite rank
title Positive semidefinite rank
spellingShingle Positive semidefinite rank
Fawzi, Hamza
title_short Positive semidefinite rank
title_full Positive semidefinite rank
title_fullStr Positive semidefinite rank
title_full_unstemmed Positive semidefinite rank
title_sort Positive semidefinite rank
author Fawzi, Hamza
author_facet Fawzi, Hamza
Gouveia, João
Parrilo, Pablo A.
Robinson, Richard Z.
Thomas, Rekha R.
author_role author
author2 Gouveia, João
Parrilo, Pablo A.
Robinson, Richard Z.
Thomas, Rekha R.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Fawzi, Hamza
Gouveia, João
Parrilo, Pablo A.
Robinson, Richard Z.
Thomas, Rekha R.
description Let M∈R^p×q be a nonnegative matrix. The positive semidefinite rank (psd rank) of M is the smallest integer k for which there exist positive semidefinite matrices A_i, B_j of size k × k such that M_ij = trace(A_i B_j). The psd rank has many appealing geometric interpretations, including semidefinite representations of polyhedra and information-theoretic applications. In this paper we develop and survey the main mathematical properties of psd rank, including its geometry, relationships with other rank notions, and computational and algorithmic aspects.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/44191
http://hdl.handle.net/10316/44191
https://doi.org/10.1007/s10107-015-0922-1
https://doi.org/10.1007/s10107-015-0922-1
url http://hdl.handle.net/10316/44191
https://doi.org/10.1007/s10107-015-0922-1
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://doi.org/10.1007/s10107-015-0922-1
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133822230462464