Predicting and distinguishing bankruptcy: an application of a market and hybrid model to US publicly listed firms from 2008 to 2018

Detalhes bibliográficos
Autor(a) principal: Silva, Bernardo Rui Vaz
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/21449
Resumo: Assessing the probability of bankruptcy has been a key topic approached by researchers and academics throughout the last half century. The bankruptcy of considerable firms, such as Enron or WorldCom, coupled with the rigorous regulatory environment triggered by Basel II guidelines, fostered even further the interest in the topic. Moreover, in the outcome of financial crisis, Credit Rating Agencies were criticized for addressing inflated ratings and not properly anticipating defaults. Besides, leading CRA’s do not assess the creditworthiness of all firms, and our intention is to provide to individual investor the best option available to autonomously estimate the probability of bankruptcy We analyse if either a market-based model, KMV, or a hybrid model, CHS, are able to properly anticipate the event of bankruptcy, and in case this is verified, which of them better distinguish between bankrupt and non-bankrupt firms. In order to do so, we resort to a sample of 354 US publicly listed firms, divided into bankrupt and non-bankrupt firms, and applied the ROC technique to assess our results, for a 10-year period. Our results prove that KMV model is slightly superior to the CHS model at maximizing the Area Under the Curve (AUC). Besides, it provided a higher optimal probability’s cut off point that distinguish both type of firms. Our results indicate that the KMV model is the best option available for an individual investor to assess the probability of default, given the results achieved and the easiness of application when compared to the CHS model.
id RCAP_0afd7ce276066513ecb12f1a076c34e2
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/21449
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Predicting and distinguishing bankruptcy: an application of a market and hybrid model to US publicly listed firms from 2008 to 2018BankruptcyCredit risk modellingROC analysisKMV ModelCHS ModelFalênciaModelização do risco de créditoAnálise ROCModelo KMVModelo CHS iiAssessing the probability of bankruptcy has been a key topic approached by researchers and academics throughout the last half century. The bankruptcy of considerable firms, such as Enron or WorldCom, coupled with the rigorous regulatory environment triggered by Basel II guidelines, fostered even further the interest in the topic. Moreover, in the outcome of financial crisis, Credit Rating Agencies were criticized for addressing inflated ratings and not properly anticipating defaults. Besides, leading CRA’s do not assess the creditworthiness of all firms, and our intention is to provide to individual investor the best option available to autonomously estimate the probability of bankruptcy We analyse if either a market-based model, KMV, or a hybrid model, CHS, are able to properly anticipate the event of bankruptcy, and in case this is verified, which of them better distinguish between bankrupt and non-bankrupt firms. In order to do so, we resort to a sample of 354 US publicly listed firms, divided into bankrupt and non-bankrupt firms, and applied the ROC technique to assess our results, for a 10-year period. Our results prove that KMV model is slightly superior to the CHS model at maximizing the Area Under the Curve (AUC). Besides, it provided a higher optimal probability’s cut off point that distinguish both type of firms. Our results indicate that the KMV model is the best option available for an individual investor to assess the probability of default, given the results achieved and the easiness of application when compared to the CHS model.A avaliação da probabilidade de falência tem sido um tema-chave abordado por investigadores e académicos ao longo do último meio século. A falência de empresas consideráveis como a Enron ou a WorldCom, aliada ao rigoroso ambiente regulamentar desencadeado pelas diretrizes de Basileia II, fomentou ainda mais o interesse pelo tema. Além disso, na sequência da crise financeira, as agências de notação de crédito (ANC) foram criticadas por endereçarem notações inflacionadas e não anteciparem corretamente os incumprimentos. Ademais, as principais ANC não avaliam todas as empresas, e a nossa intenção é proporcionar ao investidor individual a melhor opção disponível para estimar autonomamente a probabilidade de falência. Neste estudo analisou-se se um modelo baseado em dados de mercado, o KMV, e um modelo híbrido, o CHS, diferenciam o evento de falência e, caso isso seja verificado, qual deles melhor distingue entre empresas falidas e não falidas. Para tal, recorremos a uma amostra de 354 empresas cotadas nos EUA, divididas em empresas falidas e não falidas, aplicando a técnica estatística "ROC", num período de 10 anos. Os nossos resultados sugerem que o modelo KMV é ligeiramente superior ao modelo CHS, maximizando a área sob a curva (AUC). Além disso, o primeiro proporcionou um ponto de corte de probabilidade mais elevado que distingue ambos os tipos de empresas. Os nossos resultados indiciam que o KMV é a melhor opção disponível para um investidor individual avaliar a probabilidade de incumprimento, dado os resultados alcançados e a facilidade de aplicação em comparação com o modelo CHS.2023-12-21T00:00:00Z2020-12-21T00:00:00Z2020-12-212020-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/21449TID:202571238engSilva, Bernardo Rui Vazinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-24T01:17:49Zoai:repositorio.iscte-iul.pt:10071/21449Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:10:38.386875Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Predicting and distinguishing bankruptcy: an application of a market and hybrid model to US publicly listed firms from 2008 to 2018
title Predicting and distinguishing bankruptcy: an application of a market and hybrid model to US publicly listed firms from 2008 to 2018
spellingShingle Predicting and distinguishing bankruptcy: an application of a market and hybrid model to US publicly listed firms from 2008 to 2018
Silva, Bernardo Rui Vaz
Bankruptcy
Credit risk modelling
ROC analysis
KMV Model
CHS Model
Falência
Modelização do risco de crédito
Análise ROC
Modelo KMV
Modelo CHS ii
title_short Predicting and distinguishing bankruptcy: an application of a market and hybrid model to US publicly listed firms from 2008 to 2018
title_full Predicting and distinguishing bankruptcy: an application of a market and hybrid model to US publicly listed firms from 2008 to 2018
title_fullStr Predicting and distinguishing bankruptcy: an application of a market and hybrid model to US publicly listed firms from 2008 to 2018
title_full_unstemmed Predicting and distinguishing bankruptcy: an application of a market and hybrid model to US publicly listed firms from 2008 to 2018
title_sort Predicting and distinguishing bankruptcy: an application of a market and hybrid model to US publicly listed firms from 2008 to 2018
author Silva, Bernardo Rui Vaz
author_facet Silva, Bernardo Rui Vaz
author_role author
dc.contributor.author.fl_str_mv Silva, Bernardo Rui Vaz
dc.subject.por.fl_str_mv Bankruptcy
Credit risk modelling
ROC analysis
KMV Model
CHS Model
Falência
Modelização do risco de crédito
Análise ROC
Modelo KMV
Modelo CHS ii
topic Bankruptcy
Credit risk modelling
ROC analysis
KMV Model
CHS Model
Falência
Modelização do risco de crédito
Análise ROC
Modelo KMV
Modelo CHS ii
description Assessing the probability of bankruptcy has been a key topic approached by researchers and academics throughout the last half century. The bankruptcy of considerable firms, such as Enron or WorldCom, coupled with the rigorous regulatory environment triggered by Basel II guidelines, fostered even further the interest in the topic. Moreover, in the outcome of financial crisis, Credit Rating Agencies were criticized for addressing inflated ratings and not properly anticipating defaults. Besides, leading CRA’s do not assess the creditworthiness of all firms, and our intention is to provide to individual investor the best option available to autonomously estimate the probability of bankruptcy We analyse if either a market-based model, KMV, or a hybrid model, CHS, are able to properly anticipate the event of bankruptcy, and in case this is verified, which of them better distinguish between bankrupt and non-bankrupt firms. In order to do so, we resort to a sample of 354 US publicly listed firms, divided into bankrupt and non-bankrupt firms, and applied the ROC technique to assess our results, for a 10-year period. Our results prove that KMV model is slightly superior to the CHS model at maximizing the Area Under the Curve (AUC). Besides, it provided a higher optimal probability’s cut off point that distinguish both type of firms. Our results indicate that the KMV model is the best option available for an individual investor to assess the probability of default, given the results achieved and the easiness of application when compared to the CHS model.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-21T00:00:00Z
2020-12-21
2020-11
2023-12-21T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/21449
TID:202571238
url http://hdl.handle.net/10071/21449
identifier_str_mv TID:202571238
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134660281761792