Predicting and distinguishing bankruptcy: an application of a market and hybrid model to US publicly listed firms from 2008 to 2018
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/21449 |
Resumo: | Assessing the probability of bankruptcy has been a key topic approached by researchers and academics throughout the last half century. The bankruptcy of considerable firms, such as Enron or WorldCom, coupled with the rigorous regulatory environment triggered by Basel II guidelines, fostered even further the interest in the topic. Moreover, in the outcome of financial crisis, Credit Rating Agencies were criticized for addressing inflated ratings and not properly anticipating defaults. Besides, leading CRA’s do not assess the creditworthiness of all firms, and our intention is to provide to individual investor the best option available to autonomously estimate the probability of bankruptcy We analyse if either a market-based model, KMV, or a hybrid model, CHS, are able to properly anticipate the event of bankruptcy, and in case this is verified, which of them better distinguish between bankrupt and non-bankrupt firms. In order to do so, we resort to a sample of 354 US publicly listed firms, divided into bankrupt and non-bankrupt firms, and applied the ROC technique to assess our results, for a 10-year period. Our results prove that KMV model is slightly superior to the CHS model at maximizing the Area Under the Curve (AUC). Besides, it provided a higher optimal probability’s cut off point that distinguish both type of firms. Our results indicate that the KMV model is the best option available for an individual investor to assess the probability of default, given the results achieved and the easiness of application when compared to the CHS model. |
id |
RCAP_0afd7ce276066513ecb12f1a076c34e2 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/21449 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Predicting and distinguishing bankruptcy: an application of a market and hybrid model to US publicly listed firms from 2008 to 2018BankruptcyCredit risk modellingROC analysisKMV ModelCHS ModelFalênciaModelização do risco de créditoAnálise ROCModelo KMVModelo CHS iiAssessing the probability of bankruptcy has been a key topic approached by researchers and academics throughout the last half century. The bankruptcy of considerable firms, such as Enron or WorldCom, coupled with the rigorous regulatory environment triggered by Basel II guidelines, fostered even further the interest in the topic. Moreover, in the outcome of financial crisis, Credit Rating Agencies were criticized for addressing inflated ratings and not properly anticipating defaults. Besides, leading CRA’s do not assess the creditworthiness of all firms, and our intention is to provide to individual investor the best option available to autonomously estimate the probability of bankruptcy We analyse if either a market-based model, KMV, or a hybrid model, CHS, are able to properly anticipate the event of bankruptcy, and in case this is verified, which of them better distinguish between bankrupt and non-bankrupt firms. In order to do so, we resort to a sample of 354 US publicly listed firms, divided into bankrupt and non-bankrupt firms, and applied the ROC technique to assess our results, for a 10-year period. Our results prove that KMV model is slightly superior to the CHS model at maximizing the Area Under the Curve (AUC). Besides, it provided a higher optimal probability’s cut off point that distinguish both type of firms. Our results indicate that the KMV model is the best option available for an individual investor to assess the probability of default, given the results achieved and the easiness of application when compared to the CHS model.A avaliação da probabilidade de falência tem sido um tema-chave abordado por investigadores e académicos ao longo do último meio século. A falência de empresas consideráveis como a Enron ou a WorldCom, aliada ao rigoroso ambiente regulamentar desencadeado pelas diretrizes de Basileia II, fomentou ainda mais o interesse pelo tema. Além disso, na sequência da crise financeira, as agências de notação de crédito (ANC) foram criticadas por endereçarem notações inflacionadas e não anteciparem corretamente os incumprimentos. Ademais, as principais ANC não avaliam todas as empresas, e a nossa intenção é proporcionar ao investidor individual a melhor opção disponível para estimar autonomamente a probabilidade de falência. Neste estudo analisou-se se um modelo baseado em dados de mercado, o KMV, e um modelo híbrido, o CHS, diferenciam o evento de falência e, caso isso seja verificado, qual deles melhor distingue entre empresas falidas e não falidas. Para tal, recorremos a uma amostra de 354 empresas cotadas nos EUA, divididas em empresas falidas e não falidas, aplicando a técnica estatística "ROC", num período de 10 anos. Os nossos resultados sugerem que o modelo KMV é ligeiramente superior ao modelo CHS, maximizando a área sob a curva (AUC). Além disso, o primeiro proporcionou um ponto de corte de probabilidade mais elevado que distingue ambos os tipos de empresas. Os nossos resultados indiciam que o KMV é a melhor opção disponível para um investidor individual avaliar a probabilidade de incumprimento, dado os resultados alcançados e a facilidade de aplicação em comparação com o modelo CHS.2023-12-21T00:00:00Z2020-12-21T00:00:00Z2020-12-212020-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/21449TID:202571238engSilva, Bernardo Rui Vazinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-24T01:17:49Zoai:repositorio.iscte-iul.pt:10071/21449Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:10:38.386875Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Predicting and distinguishing bankruptcy: an application of a market and hybrid model to US publicly listed firms from 2008 to 2018 |
title |
Predicting and distinguishing bankruptcy: an application of a market and hybrid model to US publicly listed firms from 2008 to 2018 |
spellingShingle |
Predicting and distinguishing bankruptcy: an application of a market and hybrid model to US publicly listed firms from 2008 to 2018 Silva, Bernardo Rui Vaz Bankruptcy Credit risk modelling ROC analysis KMV Model CHS Model Falência Modelização do risco de crédito Análise ROC Modelo KMV Modelo CHS ii |
title_short |
Predicting and distinguishing bankruptcy: an application of a market and hybrid model to US publicly listed firms from 2008 to 2018 |
title_full |
Predicting and distinguishing bankruptcy: an application of a market and hybrid model to US publicly listed firms from 2008 to 2018 |
title_fullStr |
Predicting and distinguishing bankruptcy: an application of a market and hybrid model to US publicly listed firms from 2008 to 2018 |
title_full_unstemmed |
Predicting and distinguishing bankruptcy: an application of a market and hybrid model to US publicly listed firms from 2008 to 2018 |
title_sort |
Predicting and distinguishing bankruptcy: an application of a market and hybrid model to US publicly listed firms from 2008 to 2018 |
author |
Silva, Bernardo Rui Vaz |
author_facet |
Silva, Bernardo Rui Vaz |
author_role |
author |
dc.contributor.author.fl_str_mv |
Silva, Bernardo Rui Vaz |
dc.subject.por.fl_str_mv |
Bankruptcy Credit risk modelling ROC analysis KMV Model CHS Model Falência Modelização do risco de crédito Análise ROC Modelo KMV Modelo CHS ii |
topic |
Bankruptcy Credit risk modelling ROC analysis KMV Model CHS Model Falência Modelização do risco de crédito Análise ROC Modelo KMV Modelo CHS ii |
description |
Assessing the probability of bankruptcy has been a key topic approached by researchers and academics throughout the last half century. The bankruptcy of considerable firms, such as Enron or WorldCom, coupled with the rigorous regulatory environment triggered by Basel II guidelines, fostered even further the interest in the topic. Moreover, in the outcome of financial crisis, Credit Rating Agencies were criticized for addressing inflated ratings and not properly anticipating defaults. Besides, leading CRA’s do not assess the creditworthiness of all firms, and our intention is to provide to individual investor the best option available to autonomously estimate the probability of bankruptcy We analyse if either a market-based model, KMV, or a hybrid model, CHS, are able to properly anticipate the event of bankruptcy, and in case this is verified, which of them better distinguish between bankrupt and non-bankrupt firms. In order to do so, we resort to a sample of 354 US publicly listed firms, divided into bankrupt and non-bankrupt firms, and applied the ROC technique to assess our results, for a 10-year period. Our results prove that KMV model is slightly superior to the CHS model at maximizing the Area Under the Curve (AUC). Besides, it provided a higher optimal probability’s cut off point that distinguish both type of firms. Our results indicate that the KMV model is the best option available for an individual investor to assess the probability of default, given the results achieved and the easiness of application when compared to the CHS model. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-21T00:00:00Z 2020-12-21 2020-11 2023-12-21T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/21449 TID:202571238 |
url |
http://hdl.handle.net/10071/21449 |
identifier_str_mv |
TID:202571238 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134660281761792 |