Equivalence of thermodynamical fundamental equations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2000 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/12347 |
Resumo: | The Gibbs function, which depends on the intensive variables T and P , is easier to obtain experimentally than any other thermodynamical potential. However, textbooks usually first introduce the internal energy, as a function of the extensive variables V and S, and then proceed, by Legendre transformations, to obtain the Gibbs function. Here, taking liquid water as an example, we show how to obtain the internal energy from the Gibbs function. The two fundamental equations (Gibbs function and internal energy) are examined and their output compared. In both cases complete thermodynamical information is obtained and shown to be practically the same, emphasizing the equivalence of the two equations. The formalism of the Gibbs function is entirely analytical, while that based on the internal energy is, in this case, numerical. Although it is well known that all thermodynamic potentials contain the same information, usually only the ideal gas is given as an example. The study of real systems, such as liquid water, using numerical methods, may help students to obtain a deeper insight into thermodynamics |
id |
RCAP_0aff934933efa5031fb5dffc9e41f93c |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/12347 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Equivalence of thermodynamical fundamental equationsThe Gibbs function, which depends on the intensive variables T and P , is easier to obtain experimentally than any other thermodynamical potential. However, textbooks usually first introduce the internal energy, as a function of the extensive variables V and S, and then proceed, by Legendre transformations, to obtain the Gibbs function. Here, taking liquid water as an example, we show how to obtain the internal energy from the Gibbs function. The two fundamental equations (Gibbs function and internal energy) are examined and their output compared. In both cases complete thermodynamical information is obtained and shown to be practically the same, emphasizing the equivalence of the two equations. The formalism of the Gibbs function is entirely analytical, while that based on the internal energy is, in this case, numerical. Although it is well known that all thermodynamic potentials contain the same information, usually only the ideal gas is given as an example. The study of real systems, such as liquid water, using numerical methods, may help students to obtain a deeper insight into thermodynamicsInstitute of Physics Publishing2000info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/12347http://hdl.handle.net/10316/12347engEuropean journal of physics. 21 (2000) 395–4040143-0807Güémez, JúlioFiolhais, CarlosFiolhais, Manuelinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-01-24T15:27:19Zoai:estudogeral.uc.pt:10316/12347Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:59:58.206903Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Equivalence of thermodynamical fundamental equations |
title |
Equivalence of thermodynamical fundamental equations |
spellingShingle |
Equivalence of thermodynamical fundamental equations Güémez, Júlio |
title_short |
Equivalence of thermodynamical fundamental equations |
title_full |
Equivalence of thermodynamical fundamental equations |
title_fullStr |
Equivalence of thermodynamical fundamental equations |
title_full_unstemmed |
Equivalence of thermodynamical fundamental equations |
title_sort |
Equivalence of thermodynamical fundamental equations |
author |
Güémez, Júlio |
author_facet |
Güémez, Júlio Fiolhais, Carlos Fiolhais, Manuel |
author_role |
author |
author2 |
Fiolhais, Carlos Fiolhais, Manuel |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Güémez, Júlio Fiolhais, Carlos Fiolhais, Manuel |
description |
The Gibbs function, which depends on the intensive variables T and P , is easier to obtain experimentally than any other thermodynamical potential. However, textbooks usually first introduce the internal energy, as a function of the extensive variables V and S, and then proceed, by Legendre transformations, to obtain the Gibbs function. Here, taking liquid water as an example, we show how to obtain the internal energy from the Gibbs function. The two fundamental equations (Gibbs function and internal energy) are examined and their output compared. In both cases complete thermodynamical information is obtained and shown to be practically the same, emphasizing the equivalence of the two equations. The formalism of the Gibbs function is entirely analytical, while that based on the internal energy is, in this case, numerical. Although it is well known that all thermodynamic potentials contain the same information, usually only the ideal gas is given as an example. The study of real systems, such as liquid water, using numerical methods, may help students to obtain a deeper insight into thermodynamics |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/12347 http://hdl.handle.net/10316/12347 |
url |
http://hdl.handle.net/10316/12347 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
European journal of physics. 21 (2000) 395–404 0143-0807 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Institute of Physics Publishing |
publisher.none.fl_str_mv |
Institute of Physics Publishing |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133890019852288 |