Mediator framework for inserting data into hadoop

Detalhes bibliográficos
Autor(a) principal: Capitão, Micael José Pedrosa
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/14697
Resumo: Data has always been one of the most valuable resources for organizations. With it we can extract information and, with enough information on a subject, we can build knowledge. However, it is first needed to store that data for later processing. On the last decades we have been assisting what was called “information explosion”. With the advent of the new technologies, the volume, velocity and variety of data has increased exponentially, becoming what is known today as big data. Telecommunications operators gather, using network monitoring equipment, millions of network event records, the Call Detail Records (CDRs) and the Event Detail Records (EDRs), commonly known as xDRs. These records are stored and later processed to compute network performance and quality of service metrics. With the ever increasing number of telecommunications subscribers, the volume of generated xDRs needing to be stored and processed has increased exponentially, making the current solutions based on relational databases not suited any more and so, they are facing a big data problem. To handle that problem, many contributions have been made on the last years that have resulted in solid and innovative solutions. Among them, Hadoop and its vast ecosystem stands out. Hadoop integrates new methods of storing and process high volumes of data in a robust and cost-effective way, using commodity hardware. This dissertation presents a platform that enables the current systems inserting data into relational databases, to keep doing it transparently when migrating those to Hadoop. The platform has to, like in the relational databases, give delivery guarantees, support unique constraints and, be fault tolerant. As proof of concept, the developed platform was integrated with a system specifically designed to the computation of performance and quality of service metrics from xDRs, the Altaia. The performance tests have shown the platform fulfils and exceeds the requirements for the insertion rate of records. During the tests the behaviour of the platform when trying to insert duplicated records and when in failure scenarios have also been evaluated. The results for both situations were as expected.
id RCAP_0b7266d220330e14c16c036e18765844
oai_identifier_str oai:ria.ua.pt:10773/14697
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Mediator framework for inserting data into hadoopEngenharia de computadoresBases de dados distribuídasGestão de bases de dadosData has always been one of the most valuable resources for organizations. With it we can extract information and, with enough information on a subject, we can build knowledge. However, it is first needed to store that data for later processing. On the last decades we have been assisting what was called “information explosion”. With the advent of the new technologies, the volume, velocity and variety of data has increased exponentially, becoming what is known today as big data. Telecommunications operators gather, using network monitoring equipment, millions of network event records, the Call Detail Records (CDRs) and the Event Detail Records (EDRs), commonly known as xDRs. These records are stored and later processed to compute network performance and quality of service metrics. With the ever increasing number of telecommunications subscribers, the volume of generated xDRs needing to be stored and processed has increased exponentially, making the current solutions based on relational databases not suited any more and so, they are facing a big data problem. To handle that problem, many contributions have been made on the last years that have resulted in solid and innovative solutions. Among them, Hadoop and its vast ecosystem stands out. Hadoop integrates new methods of storing and process high volumes of data in a robust and cost-effective way, using commodity hardware. This dissertation presents a platform that enables the current systems inserting data into relational databases, to keep doing it transparently when migrating those to Hadoop. The platform has to, like in the relational databases, give delivery guarantees, support unique constraints and, be fault tolerant. As proof of concept, the developed platform was integrated with a system specifically designed to the computation of performance and quality of service metrics from xDRs, the Altaia. The performance tests have shown the platform fulfils and exceeds the requirements for the insertion rate of records. During the tests the behaviour of the platform when trying to insert duplicated records and when in failure scenarios have also been evaluated. The results for both situations were as expected.“Dados” sempre foram um dos mais valiosos recursos das organizações. Com eles pode-se extrair informação e, com informação suficiente, pode-se criar conhecimento. No entanto, é necessário primeiro conseguir guardar esses dados para posteriormente os processar. Nas últimas décadas tem-se assistido ao que foi apelidado de “explosão de informação”. Com o advento das novas tecnologias, o volume, velocidade e variedade dos dados tem crescido exponencialmente, tornando-se no que é hoje conhecido como big data. Os operadores de telecomunicações obtêm, através de equipamentos de monitorização da rede, milhões de registos relativos a eventos da rede, os Call Detail Records (CDRs) e os Event Detail Records (EDRs), conhecidos como xDRs. Esses registos são armazenados e depois processados para deles se produzirem métricas relativas ao desempenho da rede e à qualidade dos serviços prestados. Com o aumento dos utilizadores de telecomunicações, o volume de registos gerados que precisam de ser armazenados e processados cresceu exponencialmente, inviabilizando as soluções que assentam em bases de dados relacionais, estando-se agora perante um problema de big data. Para tratar esse problema, múltiplas contribuições foram feitas ao longo dos últimos anos que resultaram em soluções sólidas e inovadores. De entre elas, destaca-se o Hadoop e o seu vasto ecossistema. O Hadoop incorpora novos métodos de guardar e tratar elevados volumes de dados de forma robusta e rentável, usando hardware convencional. Esta dissertação apresenta uma plataforma que possibilita aos actuais sistemas que inserem dados em bases de dados relacionais, que o continuem a fazer de forma transparente quando essas migrarem para Hadoop. A plataforma tem de, tal como nas bases de dados relacionais, dar garantias de entrega, suportar restrições de chaves únicas e ser tolerante a falhas. Como prova de conceito, integrou-se a plataforma desenvolvida com um sistema especificamente desenhado para o cálculo de métricas de performance e de qualidade de serviço a partir de xDRs, o Altaia. Pelos testes de desempenho realizados, a plataforma cumpre e excede os requisitos relativos à taxa de inserção de registos. Durante os testes também se avaliou o seu comportamento perante tentativas de inserção de registos duplicados e perante situações de falha, tendo o resultado, para ambas as situações, sido o esperado.Universidade de Aveiro2015-09-22T15:18:21Z2014-01-01T00:00:00Z2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/14697TID:201587041engCapitão, Micael José Pedrosainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:26:55Zoai:ria.ua.pt:10773/14697Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:13.575273Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Mediator framework for inserting data into hadoop
title Mediator framework for inserting data into hadoop
spellingShingle Mediator framework for inserting data into hadoop
Capitão, Micael José Pedrosa
Engenharia de computadores
Bases de dados distribuídas
Gestão de bases de dados
title_short Mediator framework for inserting data into hadoop
title_full Mediator framework for inserting data into hadoop
title_fullStr Mediator framework for inserting data into hadoop
title_full_unstemmed Mediator framework for inserting data into hadoop
title_sort Mediator framework for inserting data into hadoop
author Capitão, Micael José Pedrosa
author_facet Capitão, Micael José Pedrosa
author_role author
dc.contributor.author.fl_str_mv Capitão, Micael José Pedrosa
dc.subject.por.fl_str_mv Engenharia de computadores
Bases de dados distribuídas
Gestão de bases de dados
topic Engenharia de computadores
Bases de dados distribuídas
Gestão de bases de dados
description Data has always been one of the most valuable resources for organizations. With it we can extract information and, with enough information on a subject, we can build knowledge. However, it is first needed to store that data for later processing. On the last decades we have been assisting what was called “information explosion”. With the advent of the new technologies, the volume, velocity and variety of data has increased exponentially, becoming what is known today as big data. Telecommunications operators gather, using network monitoring equipment, millions of network event records, the Call Detail Records (CDRs) and the Event Detail Records (EDRs), commonly known as xDRs. These records are stored and later processed to compute network performance and quality of service metrics. With the ever increasing number of telecommunications subscribers, the volume of generated xDRs needing to be stored and processed has increased exponentially, making the current solutions based on relational databases not suited any more and so, they are facing a big data problem. To handle that problem, many contributions have been made on the last years that have resulted in solid and innovative solutions. Among them, Hadoop and its vast ecosystem stands out. Hadoop integrates new methods of storing and process high volumes of data in a robust and cost-effective way, using commodity hardware. This dissertation presents a platform that enables the current systems inserting data into relational databases, to keep doing it transparently when migrating those to Hadoop. The platform has to, like in the relational databases, give delivery guarantees, support unique constraints and, be fault tolerant. As proof of concept, the developed platform was integrated with a system specifically designed to the computation of performance and quality of service metrics from xDRs, the Altaia. The performance tests have shown the platform fulfils and exceeds the requirements for the insertion rate of records. During the tests the behaviour of the platform when trying to insert duplicated records and when in failure scenarios have also been evaluated. The results for both situations were as expected.
publishDate 2014
dc.date.none.fl_str_mv 2014-01-01T00:00:00Z
2014
2015-09-22T15:18:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/14697
TID:201587041
url http://hdl.handle.net/10773/14697
identifier_str_mv TID:201587041
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Aveiro
publisher.none.fl_str_mv Universidade de Aveiro
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137552337207296