Optimizing propagation models on railway communications using genetic algorithms
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.21/12296 |
Resumo: | Although the Okumura-Hata prediction model has been a widely used model to estimate radio network coverage, its application in railways environment requires calibration. The objective of this work is to present Genetic Algorithms as a solution in optimizing propagation models, proving that it can be used for optimizing the Okumura-Hata model on railway communications in order to improve its prediction of radio coverage. Several tests were carried out using different conditions allowing to establish the conditions that maximize the gain of the algorithm for this particular problem. The algorithm was applied to training samples and the resulting parameters were applied to different scenarios, showing improvements in the prediction results. |
id |
RCAP_0c2ff0eca38e4412d2d63a2f881554d7 |
---|---|
oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/12296 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Optimizing propagation models on railway communications using genetic algorithmsOptimizationPropagation modelOkumura-hataGenetic algorithmsRailway communicationsAlthough the Okumura-Hata prediction model has been a widely used model to estimate radio network coverage, its application in railways environment requires calibration. The objective of this work is to present Genetic Algorithms as a solution in optimizing propagation models, proving that it can be used for optimizing the Okumura-Hata model on railway communications in order to improve its prediction of radio coverage. Several tests were carried out using different conditions allowing to establish the conditions that maximize the gain of the algorithm for this particular problem. The algorithm was applied to training samples and the resulting parameters were applied to different scenarios, showing improvements in the prediction results.ElsevierRCIPLBeire, Ana RitaPinheiro Pita, Helder JorgeCota, Nuno2020-10-27T11:28:03Z20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/12296engBEIRE, Ana Rita; PITA, Helder; COTA, Nuno – Optimizing propagation models on railway communications using genetic algorithms. Procedia Technology. ISSN 2212-0173. Vol. 17 (2014), pp. 50-572212-017310.1016/j.protcy.2014.10.215info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T10:04:55Zoai:repositorio.ipl.pt:10400.21/12296Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:20:24.742759Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Optimizing propagation models on railway communications using genetic algorithms |
title |
Optimizing propagation models on railway communications using genetic algorithms |
spellingShingle |
Optimizing propagation models on railway communications using genetic algorithms Beire, Ana Rita Optimization Propagation model Okumura-hata Genetic algorithms Railway communications |
title_short |
Optimizing propagation models on railway communications using genetic algorithms |
title_full |
Optimizing propagation models on railway communications using genetic algorithms |
title_fullStr |
Optimizing propagation models on railway communications using genetic algorithms |
title_full_unstemmed |
Optimizing propagation models on railway communications using genetic algorithms |
title_sort |
Optimizing propagation models on railway communications using genetic algorithms |
author |
Beire, Ana Rita |
author_facet |
Beire, Ana Rita Pinheiro Pita, Helder Jorge Cota, Nuno |
author_role |
author |
author2 |
Pinheiro Pita, Helder Jorge Cota, Nuno |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
RCIPL |
dc.contributor.author.fl_str_mv |
Beire, Ana Rita Pinheiro Pita, Helder Jorge Cota, Nuno |
dc.subject.por.fl_str_mv |
Optimization Propagation model Okumura-hata Genetic algorithms Railway communications |
topic |
Optimization Propagation model Okumura-hata Genetic algorithms Railway communications |
description |
Although the Okumura-Hata prediction model has been a widely used model to estimate radio network coverage, its application in railways environment requires calibration. The objective of this work is to present Genetic Algorithms as a solution in optimizing propagation models, proving that it can be used for optimizing the Okumura-Hata model on railway communications in order to improve its prediction of radio coverage. Several tests were carried out using different conditions allowing to establish the conditions that maximize the gain of the algorithm for this particular problem. The algorithm was applied to training samples and the resulting parameters were applied to different scenarios, showing improvements in the prediction results. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2014-01-01T00:00:00Z 2020-10-27T11:28:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/12296 |
url |
http://hdl.handle.net/10400.21/12296 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
BEIRE, Ana Rita; PITA, Helder; COTA, Nuno – Optimizing propagation models on railway communications using genetic algorithms. Procedia Technology. ISSN 2212-0173. Vol. 17 (2014), pp. 50-57 2212-0173 10.1016/j.protcy.2014.10.215 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1817553322599514112 |