Discovery of infection biomarkers based on metabolomics

Detalhes bibliográficos
Autor(a) principal: Alexandre, Tiago Francisco Rosa Domingues
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.21/16487
Resumo: Thesis to obtain the Master’s degree in Biomedical Engineering
id RCAP_0c661091ea727ae2db953d7606929fc5
oai_identifier_str oai:repositorio.ipl.pt:10400.21/16487
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Discovery of infection biomarkers based on metabolomicsBiomarcadoresInfeçãoBacteremiaCOVID-19FTIREspetroscopiaBackground and Goals: Critical COVID-19 patients are regularly admitted with diverse complications leading to Intensive care unit (ICU) admission. Besides these patients are constantly exposed to the threat of infection during their hospital stay. These infections may lead to the worsening of the patient’s health and considering the already debilitated state of the critical COVID-19 patient, may be fatal if the infection agent isn’t correctly identified and treated within the most appropriate timing upon diagnosis. In this thesis, the focus of the study was divided into two main sections: to determine a method capable of faster identification of bacteremia in the critical COVID-19 patient; and to identify Gram bacteria causing the bacteremia. Methodology: Utilizing the FTIR spectroscopy method, and spectra principal component analysis (PCA), hierarchical cluster analyses (HCA) and linear discrimination analyses (PCA-LDA) applied to serum samples of bacteremia patients (n=48), non-bacteremia patients (n=54), and samples with Gram-positive (n=28) from Gram-negative (n=20) bacteria. Diverse spectra pre-processing methods were evaluated. Results and discussion: Spectra PCA and HCA, did not shown samples patterns enabling to separate between bacteremia and non-bacteremia samples, nor between Gram-positives and Gram-negative bacteria. The high variability associated with these patients may justify the obtained result. Spectra PCA-LDA enabled discrimination accuracy results of 75% between bacteremia and non-bacteremia samples, and of 85% for discrimination between Gram-positive and Gram-negative bacterial samples. Final remarks: The results point to the potential of FTIR spectroscopy as a very appealing method to conduct the diagnosis of bacteremia and the classification of the type of bacteria, in a simple and rapid mode, enabling a more efficient management of this type of critical patients.BiomarkersInfectionBacteremiaCOVIID-19FTIRSpectroscopyThesis to obtain the Master’s degree in Biomedical EngineeringEnquadramento e objetivos: Pacientes críticos de COVID-19 são regularmente admitidos nos cuidados intensivos com diversas complicações, necessitando de tratamentos mais invasivos. Para além disso, os pacientes estão expostos a uma ameaça iminente de infeções durante a sua estadia hospitalar. Estas infeções podem levar ao agravamento do estado de saúde do paciente, e tendo em conta o estado atual do paciente COVID-19 critico, pode ser fatal caso não seja devidamente identificada a presença de infeção e iniciado o tratamento mais adequado. Nesta tese, o foco foi dividido em dois objetivos: determinar uma metodologia capaz de identificar mais rapidamente um estado ativo de bacteremia no paciente COVID-19 critico; e identificar a tipologia de Gram da bactéria que originou a bacteremia. Métodos: Recorrendo-se ao método do espectrometria de FTIR, e testes Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA) e Linear Discriminant analysis (PCA-LDA), para realizar analise discriminante de uma amostra com objetivo de testar o método mais eficaz na discriminação entre pacientes com bacteremia (n=48) e pacientes sem bacteremia (n=54), e entre amostras com bactéria Gram-positiva (n=28) e bactéria Gram-negativa (n=20). Resultados: Através dos testes PCA e HCA não foi possível obter uma discriminação fidedigna nem entre amostras com e sem bacteremia, nem entre bactérias Gram-positivas e Gram-Negativas. A vasta variabilidade associada a amostras biológicas pode justificar este resultado. PCA-LDA, possibilitou resultados de 75% de eficácia na discriminação entre amostras de bacteremia e sem bacteremia, e uma eficácia de 85% na discriminação entre amostras com bactérias Gram-positivas e bactérias Gram-negativas. Conclusão: Os resultados apontam para a possibilidade da utilização da análise de espetro de espetrometria FTIR como um método apelador para o diagnóstico de bacteremia e classificação do tipo de bactéria, de uma forma simples e rápida, permitindo uma gestão mais eficiente deste tipo de pacientes críticos.Calado, Cecília Ribeiro da CruzSilvestre, JoanaRicardo, AntónioRCIPLAlexandre, Tiago Francisco Rosa Domingues2023-09-19T14:30:46Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.21/16487TID:203353366engALEXANDRE, Tiago Francisco Rosa Domingues - Discovery of infection biomarkers based on metabolomics. Lisboa: Instituto Superior de Engenharia de Lisboa, 2022. Dissertação de Mestrado.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-27T02:15:21Zoai:repositorio.ipl.pt:10400.21/16487Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:29:46.060831Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Discovery of infection biomarkers based on metabolomics
title Discovery of infection biomarkers based on metabolomics
spellingShingle Discovery of infection biomarkers based on metabolomics
Alexandre, Tiago Francisco Rosa Domingues
Biomarcadores
Infeção
Bacteremia
COVID-19
FTIR
Espetroscopia
Background and Goals: Critical COVID-19 patients are regularly admitted with diverse complications leading to Intensive care unit (ICU) admission. Besides these patients are constantly exposed to the threat of infection during their hospital stay. These infections may lead to the worsening of the patient’s health and considering the already debilitated state of the critical COVID-19 patient, may be fatal if the infection agent isn’t correctly identified and treated within the most appropriate timing upon diagnosis. In this thesis, the focus of the study was divided into two main sections: to determine a method capable of faster identification of bacteremia in the critical COVID-19 patient; and to identify Gram bacteria causing the bacteremia. Methodology: Utilizing the FTIR spectroscopy method, and spectra principal component analysis (PCA), hierarchical cluster analyses (HCA) and linear discrimination analyses (PCA-LDA) applied to serum samples of bacteremia patients (n=48), non-bacteremia patients (n=54), and samples with Gram-positive (n=28) from Gram-negative (n=20) bacteria. Diverse spectra pre-processing methods were evaluated. Results and discussion: Spectra PCA and HCA, did not shown samples patterns enabling to separate between bacteremia and non-bacteremia samples, nor between Gram-positives and Gram-negative bacteria. The high variability associated with these patients may justify the obtained result. Spectra PCA-LDA enabled discrimination accuracy results of 75% between bacteremia and non-bacteremia samples, and of 85% for discrimination between Gram-positive and Gram-negative bacterial samples. Final remarks: The results point to the potential of FTIR spectroscopy as a very appealing method to conduct the diagnosis of bacteremia and the classification of the type of bacteria, in a simple and rapid mode, enabling a more efficient management of this type of critical patients.
Biomarkers
Infection
Bacteremia
COVIID-19
FTIR
Spectroscopy
title_short Discovery of infection biomarkers based on metabolomics
title_full Discovery of infection biomarkers based on metabolomics
title_fullStr Discovery of infection biomarkers based on metabolomics
title_full_unstemmed Discovery of infection biomarkers based on metabolomics
title_sort Discovery of infection biomarkers based on metabolomics
author Alexandre, Tiago Francisco Rosa Domingues
author_facet Alexandre, Tiago Francisco Rosa Domingues
author_role author
dc.contributor.none.fl_str_mv Calado, Cecília Ribeiro da Cruz
Silvestre, Joana
Ricardo, António
RCIPL
dc.contributor.author.fl_str_mv Alexandre, Tiago Francisco Rosa Domingues
dc.subject.por.fl_str_mv Biomarcadores
Infeção
Bacteremia
COVID-19
FTIR
Espetroscopia
Background and Goals: Critical COVID-19 patients are regularly admitted with diverse complications leading to Intensive care unit (ICU) admission. Besides these patients are constantly exposed to the threat of infection during their hospital stay. These infections may lead to the worsening of the patient’s health and considering the already debilitated state of the critical COVID-19 patient, may be fatal if the infection agent isn’t correctly identified and treated within the most appropriate timing upon diagnosis. In this thesis, the focus of the study was divided into two main sections: to determine a method capable of faster identification of bacteremia in the critical COVID-19 patient; and to identify Gram bacteria causing the bacteremia. Methodology: Utilizing the FTIR spectroscopy method, and spectra principal component analysis (PCA), hierarchical cluster analyses (HCA) and linear discrimination analyses (PCA-LDA) applied to serum samples of bacteremia patients (n=48), non-bacteremia patients (n=54), and samples with Gram-positive (n=28) from Gram-negative (n=20) bacteria. Diverse spectra pre-processing methods were evaluated. Results and discussion: Spectra PCA and HCA, did not shown samples patterns enabling to separate between bacteremia and non-bacteremia samples, nor between Gram-positives and Gram-negative bacteria. The high variability associated with these patients may justify the obtained result. Spectra PCA-LDA enabled discrimination accuracy results of 75% between bacteremia and non-bacteremia samples, and of 85% for discrimination between Gram-positive and Gram-negative bacterial samples. Final remarks: The results point to the potential of FTIR spectroscopy as a very appealing method to conduct the diagnosis of bacteremia and the classification of the type of bacteria, in a simple and rapid mode, enabling a more efficient management of this type of critical patients.
Biomarkers
Infection
Bacteremia
COVIID-19
FTIR
Spectroscopy
topic Biomarcadores
Infeção
Bacteremia
COVID-19
FTIR
Espetroscopia
Background and Goals: Critical COVID-19 patients are regularly admitted with diverse complications leading to Intensive care unit (ICU) admission. Besides these patients are constantly exposed to the threat of infection during their hospital stay. These infections may lead to the worsening of the patient’s health and considering the already debilitated state of the critical COVID-19 patient, may be fatal if the infection agent isn’t correctly identified and treated within the most appropriate timing upon diagnosis. In this thesis, the focus of the study was divided into two main sections: to determine a method capable of faster identification of bacteremia in the critical COVID-19 patient; and to identify Gram bacteria causing the bacteremia. Methodology: Utilizing the FTIR spectroscopy method, and spectra principal component analysis (PCA), hierarchical cluster analyses (HCA) and linear discrimination analyses (PCA-LDA) applied to serum samples of bacteremia patients (n=48), non-bacteremia patients (n=54), and samples with Gram-positive (n=28) from Gram-negative (n=20) bacteria. Diverse spectra pre-processing methods were evaluated. Results and discussion: Spectra PCA and HCA, did not shown samples patterns enabling to separate between bacteremia and non-bacteremia samples, nor between Gram-positives and Gram-negative bacteria. The high variability associated with these patients may justify the obtained result. Spectra PCA-LDA enabled discrimination accuracy results of 75% between bacteremia and non-bacteremia samples, and of 85% for discrimination between Gram-positive and Gram-negative bacterial samples. Final remarks: The results point to the potential of FTIR spectroscopy as a very appealing method to conduct the diagnosis of bacteremia and the classification of the type of bacteria, in a simple and rapid mode, enabling a more efficient management of this type of critical patients.
Biomarkers
Infection
Bacteremia
COVIID-19
FTIR
Spectroscopy
description Thesis to obtain the Master’s degree in Biomedical Engineering
publishDate 2022
dc.date.none.fl_str_mv 2022
2022-01-01T00:00:00Z
2023-09-19T14:30:46Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.21/16487
TID:203353366
url http://hdl.handle.net/10400.21/16487
identifier_str_mv TID:203353366
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv ALEXANDRE, Tiago Francisco Rosa Domingues - Discovery of infection biomarkers based on metabolomics. Lisboa: Instituto Superior de Engenharia de Lisboa, 2022. Dissertação de Mestrado.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133565439442944