Severity classification in cases of Collagen VI-related myopathy with Convolutional Neural Networks and handcrafted texture features

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Rafael
Data de Publicação: 2022
Outros Autores: Quijano-Roy, Susana, Carlier, Robert-Yves, Pinheiro, Antonio M. G.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/12272
Resumo: (C) 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
id RCAP_0d227342b5b543e3e8ab49213db16714
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/12272
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Severity classification in cases of Collagen VI-related myopathy with Convolutional Neural Networks and handcrafted texture featuresCollagen VI-related myopathyMRIComputer-aided diagnosisTexture analysisConvolutional Neural Networks(C) 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Magnetic Resonance Imaging (MRI) is a non-invasive tool for the clinical assessment of low-prevalence neuromuscular disorders. Automated diagnosis methods might reduce the need for biopsies and provide valuable information on disease follow-up. In this paper, three methods are proposed to classify target muscles in Collagen VI-related myopathy cases, based on their degree of involvement, notably a Convolutional Neural Network, a Fully Connected Network to classify texture features, and a hybrid method combining the two feature sets. The proposed methods were evaluated on axial T1-weighted Turbo Spin-Echo MRI from 26 subjects, including Ullrich Congenital Muscular Dystrophy and Bethlem Myopathy patients at different evolution stages. The hybrid model achieved the best cross-validation results, with a global accuracy of 93.8%, and F-scores of 0.99, 0.82, and 0.95, for healthy, mild and moderate/severe cases, respectively.IEEEuBibliorumRodrigues, RafaelQuijano-Roy, SusanaCarlier, Robert-YvesPinheiro, Antonio M. G.2022-07-11T08:48:04Z2022-102022-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/12272enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:55:22Zoai:ubibliorum.ubi.pt:10400.6/12272Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:51:55.174708Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Severity classification in cases of Collagen VI-related myopathy with Convolutional Neural Networks and handcrafted texture features
title Severity classification in cases of Collagen VI-related myopathy with Convolutional Neural Networks and handcrafted texture features
spellingShingle Severity classification in cases of Collagen VI-related myopathy with Convolutional Neural Networks and handcrafted texture features
Rodrigues, Rafael
Collagen VI-related myopathy
MRI
Computer-aided diagnosis
Texture analysis
Convolutional Neural Networks
title_short Severity classification in cases of Collagen VI-related myopathy with Convolutional Neural Networks and handcrafted texture features
title_full Severity classification in cases of Collagen VI-related myopathy with Convolutional Neural Networks and handcrafted texture features
title_fullStr Severity classification in cases of Collagen VI-related myopathy with Convolutional Neural Networks and handcrafted texture features
title_full_unstemmed Severity classification in cases of Collagen VI-related myopathy with Convolutional Neural Networks and handcrafted texture features
title_sort Severity classification in cases of Collagen VI-related myopathy with Convolutional Neural Networks and handcrafted texture features
author Rodrigues, Rafael
author_facet Rodrigues, Rafael
Quijano-Roy, Susana
Carlier, Robert-Yves
Pinheiro, Antonio M. G.
author_role author
author2 Quijano-Roy, Susana
Carlier, Robert-Yves
Pinheiro, Antonio M. G.
author2_role author
author
author
dc.contributor.none.fl_str_mv uBibliorum
dc.contributor.author.fl_str_mv Rodrigues, Rafael
Quijano-Roy, Susana
Carlier, Robert-Yves
Pinheiro, Antonio M. G.
dc.subject.por.fl_str_mv Collagen VI-related myopathy
MRI
Computer-aided diagnosis
Texture analysis
Convolutional Neural Networks
topic Collagen VI-related myopathy
MRI
Computer-aided diagnosis
Texture analysis
Convolutional Neural Networks
description (C) 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-11T08:48:04Z
2022-10
2022-10-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/12272
url http://hdl.handle.net/10400.6/12272
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136408005246976