A Hybrid Systems Model Predictive Control Framework for AUV Motion Control
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | |
Tipo de documento: | Livro |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/115904 |
Resumo: | A computationally efficient architecture to control formations of Autonomous Underwater Vehicles (AUVs) is presented and discussed in this article. The proposed control structure enables the articulation of resources optimization with state feedback control while keeping the onboard computational burden very low. These properties are critical for AUVs systems as they operate in contexts of scarce resources and high uncertainty or variability. The hybrid nature of the controller enables different modes of operation, notably, in dealing with unanticipated obstacles. Optimization and feedback control are brought in by a novel Model Control Predictive (MPC) scheme constructed in such a way that time-invariant information is used as much as possible in a priori off-line computation. |
id |
RCAP_0da72cc68ab897cac82df3e77f12fce9 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/115904 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Hybrid Systems Model Predictive Control Framework for AUV Motion ControlA computationally efficient architecture to control formations of Autonomous Underwater Vehicles (AUVs) is presented and discussed in this article. The proposed control structure enables the articulation of resources optimization with state feedback control while keeping the onboard computational burden very low. These properties are critical for AUVs systems as they operate in contexts of scarce resources and high uncertainty or variability. The hybrid nature of the controller enables different modes of operation, notably, in dealing with unanticipated obstacles. Optimization and feedback control are brought in by a novel Model Control Predictive (MPC) scheme constructed in such a way that time-invariant information is used as much as possible in a priori off-line computation.2018-06-122018-06-12T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/115904engRui GomesFernando Lobo Pereirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T14:55:57Zoai:repositorio-aberto.up.pt:10216/115904Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:11:52.015925Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Hybrid Systems Model Predictive Control Framework for AUV Motion Control |
title |
A Hybrid Systems Model Predictive Control Framework for AUV Motion Control |
spellingShingle |
A Hybrid Systems Model Predictive Control Framework for AUV Motion Control Rui Gomes |
title_short |
A Hybrid Systems Model Predictive Control Framework for AUV Motion Control |
title_full |
A Hybrid Systems Model Predictive Control Framework for AUV Motion Control |
title_fullStr |
A Hybrid Systems Model Predictive Control Framework for AUV Motion Control |
title_full_unstemmed |
A Hybrid Systems Model Predictive Control Framework for AUV Motion Control |
title_sort |
A Hybrid Systems Model Predictive Control Framework for AUV Motion Control |
author |
Rui Gomes |
author_facet |
Rui Gomes Fernando Lobo Pereira |
author_role |
author |
author2 |
Fernando Lobo Pereira |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Rui Gomes Fernando Lobo Pereira |
description |
A computationally efficient architecture to control formations of Autonomous Underwater Vehicles (AUVs) is presented and discussed in this article. The proposed control structure enables the articulation of resources optimization with state feedback control while keeping the onboard computational burden very low. These properties are critical for AUVs systems as they operate in contexts of scarce resources and high uncertainty or variability. The hybrid nature of the controller enables different modes of operation, notably, in dealing with unanticipated obstacles. Optimization and feedback control are brought in by a novel Model Control Predictive (MPC) scheme constructed in such a way that time-invariant information is used as much as possible in a priori off-line computation. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06-12 2018-06-12T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/book |
format |
book |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/115904 |
url |
https://hdl.handle.net/10216/115904 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136041382182912 |