On minimality of convolutional ring encoders
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/6355 |
Resumo: | Convolutional codes are considered with code sequences modeled as semi-infinite Laurent series. It is well known that a convolutional code C over a finite group G has a minimal trellis representation that can be derived from code sequences. It is also well known that, for the case that G is a finite field, any polynomial encoder of C can be algebraically manipulated to yield a minimal polynomial encoder whose controller canonical realization is a minimal trellis. In this paper we seek to extend this result to the finite ring case G = ℤ_{p^r} by introducing a so-called "p-encoder". We show how to manipulate a polynomial encoding scheme of a noncatastrophic convolutional code over ℤ_{p^r} to produce a particular type of p-encoder ("minimal p-encoder") whose controller canonical realization is a minimal trellis with nonlinear features. The minimum number of trellis states is then expressed as p^γ, where γ is the sum of the row degrees of the minimal p-encoder. In particular, we show that any convolutional code over ℤ_{p^r} admits a delay-free p-encoder which implies the novel result that delay-freeness is not a property of the code but of the encoder, just as in the field case. We conjecture that a similar result holds with respect to catastrophicity, i.e., any catastrophic convolutional code over ℤ_{p^r} admits a noncatastrophic p-encoder. © 2009 IEEE. |
id |
RCAP_0ddb701eef591d4cef4d8a3141273e97 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/6355 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On minimality of convolutional ring encodersConvolutional codes over ringsMinimal polynomial encoderMinimal trellisConvolutional codes are considered with code sequences modeled as semi-infinite Laurent series. It is well known that a convolutional code C over a finite group G has a minimal trellis representation that can be derived from code sequences. It is also well known that, for the case that G is a finite field, any polynomial encoder of C can be algebraically manipulated to yield a minimal polynomial encoder whose controller canonical realization is a minimal trellis. In this paper we seek to extend this result to the finite ring case G = ℤ_{p^r} by introducing a so-called "p-encoder". We show how to manipulate a polynomial encoding scheme of a noncatastrophic convolutional code over ℤ_{p^r} to produce a particular type of p-encoder ("minimal p-encoder") whose controller canonical realization is a minimal trellis with nonlinear features. The minimum number of trellis states is then expressed as p^γ, where γ is the sum of the row degrees of the minimal p-encoder. In particular, we show that any convolutional code over ℤ_{p^r} admits a delay-free p-encoder which implies the novel result that delay-freeness is not a property of the code but of the encoder, just as in the field case. We conjecture that a similar result holds with respect to catastrophicity, i.e., any catastrophic convolutional code over ℤ_{p^r} admits a noncatastrophic p-encoder. © 2009 IEEE.2012-02-14T15:33:41Z2009-01-01T00:00:00Z2009info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/6355eng0018-944810.1109/TIT.2009.2030486Kuijper, M.Pinto, R.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:09:53Zoai:ria.ua.pt:10773/6355Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:44:06.272700Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On minimality of convolutional ring encoders |
title |
On minimality of convolutional ring encoders |
spellingShingle |
On minimality of convolutional ring encoders Kuijper, M. Convolutional codes over rings Minimal polynomial encoder Minimal trellis |
title_short |
On minimality of convolutional ring encoders |
title_full |
On minimality of convolutional ring encoders |
title_fullStr |
On minimality of convolutional ring encoders |
title_full_unstemmed |
On minimality of convolutional ring encoders |
title_sort |
On minimality of convolutional ring encoders |
author |
Kuijper, M. |
author_facet |
Kuijper, M. Pinto, R. |
author_role |
author |
author2 |
Pinto, R. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Kuijper, M. Pinto, R. |
dc.subject.por.fl_str_mv |
Convolutional codes over rings Minimal polynomial encoder Minimal trellis |
topic |
Convolutional codes over rings Minimal polynomial encoder Minimal trellis |
description |
Convolutional codes are considered with code sequences modeled as semi-infinite Laurent series. It is well known that a convolutional code C over a finite group G has a minimal trellis representation that can be derived from code sequences. It is also well known that, for the case that G is a finite field, any polynomial encoder of C can be algebraically manipulated to yield a minimal polynomial encoder whose controller canonical realization is a minimal trellis. In this paper we seek to extend this result to the finite ring case G = ℤ_{p^r} by introducing a so-called "p-encoder". We show how to manipulate a polynomial encoding scheme of a noncatastrophic convolutional code over ℤ_{p^r} to produce a particular type of p-encoder ("minimal p-encoder") whose controller canonical realization is a minimal trellis with nonlinear features. The minimum number of trellis states is then expressed as p^γ, where γ is the sum of the row degrees of the minimal p-encoder. In particular, we show that any convolutional code over ℤ_{p^r} admits a delay-free p-encoder which implies the novel result that delay-freeness is not a property of the code but of the encoder, just as in the field case. We conjecture that a similar result holds with respect to catastrophicity, i.e., any catastrophic convolutional code over ℤ_{p^r} admits a noncatastrophic p-encoder. © 2009 IEEE. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-01-01T00:00:00Z 2009 2012-02-14T15:33:41Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/6355 |
url |
http://hdl.handle.net/10773/6355 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0018-9448 10.1109/TIT.2009.2030486 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137491406553088 |