On minimality of convolutional ring encoders

Detalhes bibliográficos
Autor(a) principal: Kuijper, M.
Data de Publicação: 2009
Outros Autores: Pinto, R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/6355
Resumo: Convolutional codes are considered with code sequences modeled as semi-infinite Laurent series. It is well known that a convolutional code C over a finite group G has a minimal trellis representation that can be derived from code sequences. It is also well known that, for the case that G is a finite field, any polynomial encoder of C can be algebraically manipulated to yield a minimal polynomial encoder whose controller canonical realization is a minimal trellis. In this paper we seek to extend this result to the finite ring case G = ℤ_{p^r} by introducing a so-called "p-encoder". We show how to manipulate a polynomial encoding scheme of a noncatastrophic convolutional code over ℤ_{p^r} to produce a particular type of p-encoder ("minimal p-encoder") whose controller canonical realization is a minimal trellis with nonlinear features. The minimum number of trellis states is then expressed as p^γ, where γ is the sum of the row degrees of the minimal p-encoder. In particular, we show that any convolutional code over ℤ_{p^r} admits a delay-free p-encoder which implies the novel result that delay-freeness is not a property of the code but of the encoder, just as in the field case. We conjecture that a similar result holds with respect to catastrophicity, i.e., any catastrophic convolutional code over ℤ_{p^r} admits a noncatastrophic p-encoder. © 2009 IEEE.
id RCAP_0ddb701eef591d4cef4d8a3141273e97
oai_identifier_str oai:ria.ua.pt:10773/6355
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On minimality of convolutional ring encodersConvolutional codes over ringsMinimal polynomial encoderMinimal trellisConvolutional codes are considered with code sequences modeled as semi-infinite Laurent series. It is well known that a convolutional code C over a finite group G has a minimal trellis representation that can be derived from code sequences. It is also well known that, for the case that G is a finite field, any polynomial encoder of C can be algebraically manipulated to yield a minimal polynomial encoder whose controller canonical realization is a minimal trellis. In this paper we seek to extend this result to the finite ring case G = ℤ_{p^r} by introducing a so-called "p-encoder". We show how to manipulate a polynomial encoding scheme of a noncatastrophic convolutional code over ℤ_{p^r} to produce a particular type of p-encoder ("minimal p-encoder") whose controller canonical realization is a minimal trellis with nonlinear features. The minimum number of trellis states is then expressed as p^γ, where γ is the sum of the row degrees of the minimal p-encoder. In particular, we show that any convolutional code over ℤ_{p^r} admits a delay-free p-encoder which implies the novel result that delay-freeness is not a property of the code but of the encoder, just as in the field case. We conjecture that a similar result holds with respect to catastrophicity, i.e., any catastrophic convolutional code over ℤ_{p^r} admits a noncatastrophic p-encoder. © 2009 IEEE.2012-02-14T15:33:41Z2009-01-01T00:00:00Z2009info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/6355eng0018-944810.1109/TIT.2009.2030486Kuijper, M.Pinto, R.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:09:53Zoai:ria.ua.pt:10773/6355Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:44:06.272700Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On minimality of convolutional ring encoders
title On minimality of convolutional ring encoders
spellingShingle On minimality of convolutional ring encoders
Kuijper, M.
Convolutional codes over rings
Minimal polynomial encoder
Minimal trellis
title_short On minimality of convolutional ring encoders
title_full On minimality of convolutional ring encoders
title_fullStr On minimality of convolutional ring encoders
title_full_unstemmed On minimality of convolutional ring encoders
title_sort On minimality of convolutional ring encoders
author Kuijper, M.
author_facet Kuijper, M.
Pinto, R.
author_role author
author2 Pinto, R.
author2_role author
dc.contributor.author.fl_str_mv Kuijper, M.
Pinto, R.
dc.subject.por.fl_str_mv Convolutional codes over rings
Minimal polynomial encoder
Minimal trellis
topic Convolutional codes over rings
Minimal polynomial encoder
Minimal trellis
description Convolutional codes are considered with code sequences modeled as semi-infinite Laurent series. It is well known that a convolutional code C over a finite group G has a minimal trellis representation that can be derived from code sequences. It is also well known that, for the case that G is a finite field, any polynomial encoder of C can be algebraically manipulated to yield a minimal polynomial encoder whose controller canonical realization is a minimal trellis. In this paper we seek to extend this result to the finite ring case G = ℤ_{p^r} by introducing a so-called "p-encoder". We show how to manipulate a polynomial encoding scheme of a noncatastrophic convolutional code over ℤ_{p^r} to produce a particular type of p-encoder ("minimal p-encoder") whose controller canonical realization is a minimal trellis with nonlinear features. The minimum number of trellis states is then expressed as p^γ, where γ is the sum of the row degrees of the minimal p-encoder. In particular, we show that any convolutional code over ℤ_{p^r} admits a delay-free p-encoder which implies the novel result that delay-freeness is not a property of the code but of the encoder, just as in the field case. We conjecture that a similar result holds with respect to catastrophicity, i.e., any catastrophic convolutional code over ℤ_{p^r} admits a noncatastrophic p-encoder. © 2009 IEEE.
publishDate 2009
dc.date.none.fl_str_mv 2009-01-01T00:00:00Z
2009
2012-02-14T15:33:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/6355
url http://hdl.handle.net/10773/6355
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0018-9448
10.1109/TIT.2009.2030486
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137491406553088