3D Lung Nodule Classification in Computed Tomography Images

Detalhes bibliográficos
Autor(a) principal: Ana Rita Felgueiras Carvalho
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/123391
Resumo: Lung cancer is the leading cause of cancer death worldwide. One of the reasons is the absence of symptoms at an early stage, which means that it is only discovered at a later stage, where the treatment is more difficult [1]. Furthermore, when making a diagnosis, frequently done by reading computed tomographies (CT's), it is regularly allied with errors. One of the reasons is the variation of the opinion of the doctors regarding the diagnosis of the same nodule [2,3].The use of CADx, Computer-Aided Diagnosis, systems can be a great help for this problem by assisting doctors in diagnosis with a second opinion. Although its efficiency has already been proven [4], it often ends up not being used because doctors can not understand the "how and why" of CADx diagnostic results, and ultimately do not trust the system [5]. To increase the radiologists' confidence in the CADx system it is proposed that along with the results of malignancy prediction, there are also results with evidence that explains those malignancy results.There are some visible features in lung nodules that are correlated with malignancy. Since humans are able to visually identify these characteristics and correlate them with nodule malignancy, one way to present those evidence is to make predictions of those characteristics. To have these predictions it is proposed to use deep learning approaches. Convolutional neural networks had shown to outperform the state of the art results in medical image analysis [6]. To predict the characteristics and malignancy in CADx system, the architecture HSCNN, a deep hierarchical semantic convolutional neural network, proposed by Shen et al. [7], will be used.The Lung Image Database Consortium image collection (LIDC-IDRI) public dataset is frequently used as input for lung cancer CADx systems. The LIDC-IDRI consists of thoracic CT scans, presenting a lot of data's quantity and variability. In most of the nodules, this dataset has doctor's evaluations for 9 different characteristics. A recurrent problem in those evaluations is the subjectivity of the doctors' interpretation in what each characteristic is. In some characteristics, it can result in a great divergence in evaluations regarding the same nodule, which makes the inclusion of those evaluations as an input in CADx systems not useful as it could be. To reduce this subjectivity, it is proposed the creation of a metric that makes the characteristics classification more objective. For this, it is planned bibliographic and LIDC-IDRI dataset reviews. With that, taking into account this new metric, validated after by doctors from Hospital de São João, will be made a reclassification in LIDC-IDRI dataset. This way it could be possible to use as input all the relevant characteristics. The principal objective of this dissertation is to develop a lung nodule CADx system methodology which promotes the confidence of specialists in its use. This will be made classifying lung nodules according to relevant characteristics to diagnosis and malignancy. The reclassified LIDC-IDRI dataset will be used as an input for CADx system and the architecture used for predicting the characteristics and malignancy results will be the HSCNN. To measure the classification evaluation will be used sensitivity, sensibility, and area under the Receiver Operating Characteristic (ROC), curve. The proposed solution may be used for improving a CADx system, LNDetector, currently in development by the Center for Biomedical Engineering Research (C-BER) group from INESC-TEC in which this work will be developed.[1] - S. Sone M. Hasegawa and S. Takashima. Growth rate of small lung cancels detected on mass ct screening. Tire British Journal of Radiology, pages 1252-1259[2] - D. J. Bell S. E. Marley P. Guo H. Mann M. L. Scott L. H. Schwartz D. C. Ghiorghiu B. Zhao, Y. Tan. Exploring intra-and inter-reader variability in uni-dimensional, bi-dimensional, and volumetric measurements of solid tumors on ct scans reconstructed at different slice intervals. European journal of radiology 82, page 959-968, 2013[3] - H.T Winer-Muram. The solitary pulmonary nodule 1. Radiology, 239, pages 39-49, 2006.[4] - R. Yan J. Lee L. C. Chu C. T. Lin A. Hussien J. Rathmell B. Thomas C. Chen et al. P. Huang, S. Park. Added value of computer-aided ct image features for early lung cancer diagnosis with small pulmonary nodules: A matched case-control study. Radiology 286, page 286-295, 2017[5] - W Jorritsma, Fokie Cnossen, and Peter Van Ooijen. Improving the radiologist-cad interaction: Designing for appropriate trust. Clinical Radiology, 70, 10 2014.[6] - Tom Brosch, Youngjin Yoo, David Li, Anthony Traboulsee, and Roger Tam. Modeling the variability in brain morphology and lesion distribution in multiple sclerosis by deep learning. Volume 17, 09 2014.[7] - Simon Aberle Deni A. T. Bui Alex Hsu Willliam Shen, Shiwen X. Han. An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification. june 2018
id RCAP_0e18f5eb75f190e4b1feff7da89ae7a5
oai_identifier_str oai:repositorio-aberto.up.pt:10216/123391
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling 3D Lung Nodule Classification in Computed Tomography ImagesEngenharia electrotécnica, electrónica e informáticaElectrical engineering, Electronic engineering, Information engineeringLung cancer is the leading cause of cancer death worldwide. One of the reasons is the absence of symptoms at an early stage, which means that it is only discovered at a later stage, where the treatment is more difficult [1]. Furthermore, when making a diagnosis, frequently done by reading computed tomographies (CT's), it is regularly allied with errors. One of the reasons is the variation of the opinion of the doctors regarding the diagnosis of the same nodule [2,3].The use of CADx, Computer-Aided Diagnosis, systems can be a great help for this problem by assisting doctors in diagnosis with a second opinion. Although its efficiency has already been proven [4], it often ends up not being used because doctors can not understand the "how and why" of CADx diagnostic results, and ultimately do not trust the system [5]. To increase the radiologists' confidence in the CADx system it is proposed that along with the results of malignancy prediction, there are also results with evidence that explains those malignancy results.There are some visible features in lung nodules that are correlated with malignancy. Since humans are able to visually identify these characteristics and correlate them with nodule malignancy, one way to present those evidence is to make predictions of those characteristics. To have these predictions it is proposed to use deep learning approaches. Convolutional neural networks had shown to outperform the state of the art results in medical image analysis [6]. To predict the characteristics and malignancy in CADx system, the architecture HSCNN, a deep hierarchical semantic convolutional neural network, proposed by Shen et al. [7], will be used.The Lung Image Database Consortium image collection (LIDC-IDRI) public dataset is frequently used as input for lung cancer CADx systems. The LIDC-IDRI consists of thoracic CT scans, presenting a lot of data's quantity and variability. In most of the nodules, this dataset has doctor's evaluations for 9 different characteristics. A recurrent problem in those evaluations is the subjectivity of the doctors' interpretation in what each characteristic is. In some characteristics, it can result in a great divergence in evaluations regarding the same nodule, which makes the inclusion of those evaluations as an input in CADx systems not useful as it could be. To reduce this subjectivity, it is proposed the creation of a metric that makes the characteristics classification more objective. For this, it is planned bibliographic and LIDC-IDRI dataset reviews. With that, taking into account this new metric, validated after by doctors from Hospital de São João, will be made a reclassification in LIDC-IDRI dataset. This way it could be possible to use as input all the relevant characteristics. The principal objective of this dissertation is to develop a lung nodule CADx system methodology which promotes the confidence of specialists in its use. This will be made classifying lung nodules according to relevant characteristics to diagnosis and malignancy. The reclassified LIDC-IDRI dataset will be used as an input for CADx system and the architecture used for predicting the characteristics and malignancy results will be the HSCNN. To measure the classification evaluation will be used sensitivity, sensibility, and area under the Receiver Operating Characteristic (ROC), curve. The proposed solution may be used for improving a CADx system, LNDetector, currently in development by the Center for Biomedical Engineering Research (C-BER) group from INESC-TEC in which this work will be developed.[1] - S. Sone M. Hasegawa and S. Takashima. Growth rate of small lung cancels detected on mass ct screening. Tire British Journal of Radiology, pages 1252-1259[2] - D. J. Bell S. E. Marley P. Guo H. Mann M. L. Scott L. H. Schwartz D. C. Ghiorghiu B. Zhao, Y. Tan. Exploring intra-and inter-reader variability in uni-dimensional, bi-dimensional, and volumetric measurements of solid tumors on ct scans reconstructed at different slice intervals. European journal of radiology 82, page 959-968, 2013[3] - H.T Winer-Muram. The solitary pulmonary nodule 1. Radiology, 239, pages 39-49, 2006.[4] - R. Yan J. Lee L. C. Chu C. T. Lin A. Hussien J. Rathmell B. Thomas C. Chen et al. P. Huang, S. Park. Added value of computer-aided ct image features for early lung cancer diagnosis with small pulmonary nodules: A matched case-control study. Radiology 286, page 286-295, 2017[5] - W Jorritsma, Fokie Cnossen, and Peter Van Ooijen. Improving the radiologist-cad interaction: Designing for appropriate trust. Clinical Radiology, 70, 10 2014.[6] - Tom Brosch, Youngjin Yoo, David Li, Anthony Traboulsee, and Roger Tam. Modeling the variability in brain morphology and lesion distribution in multiple sclerosis by deep learning. Volume 17, 09 2014.[7] - Simon Aberle Deni A. T. Bui Alex Hsu Willliam Shen, Shiwen X. Han. An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification. june 20182019-09-262019-09-26T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/10216/123391TID:202389308engAna Rita Felgueiras Carvalhoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:24:19Zoai:repositorio-aberto.up.pt:10216/123391Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:22:50.814211Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv 3D Lung Nodule Classification in Computed Tomography Images
title 3D Lung Nodule Classification in Computed Tomography Images
spellingShingle 3D Lung Nodule Classification in Computed Tomography Images
Ana Rita Felgueiras Carvalho
Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
title_short 3D Lung Nodule Classification in Computed Tomography Images
title_full 3D Lung Nodule Classification in Computed Tomography Images
title_fullStr 3D Lung Nodule Classification in Computed Tomography Images
title_full_unstemmed 3D Lung Nodule Classification in Computed Tomography Images
title_sort 3D Lung Nodule Classification in Computed Tomography Images
author Ana Rita Felgueiras Carvalho
author_facet Ana Rita Felgueiras Carvalho
author_role author
dc.contributor.author.fl_str_mv Ana Rita Felgueiras Carvalho
dc.subject.por.fl_str_mv Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
topic Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
description Lung cancer is the leading cause of cancer death worldwide. One of the reasons is the absence of symptoms at an early stage, which means that it is only discovered at a later stage, where the treatment is more difficult [1]. Furthermore, when making a diagnosis, frequently done by reading computed tomographies (CT's), it is regularly allied with errors. One of the reasons is the variation of the opinion of the doctors regarding the diagnosis of the same nodule [2,3].The use of CADx, Computer-Aided Diagnosis, systems can be a great help for this problem by assisting doctors in diagnosis with a second opinion. Although its efficiency has already been proven [4], it often ends up not being used because doctors can not understand the "how and why" of CADx diagnostic results, and ultimately do not trust the system [5]. To increase the radiologists' confidence in the CADx system it is proposed that along with the results of malignancy prediction, there are also results with evidence that explains those malignancy results.There are some visible features in lung nodules that are correlated with malignancy. Since humans are able to visually identify these characteristics and correlate them with nodule malignancy, one way to present those evidence is to make predictions of those characteristics. To have these predictions it is proposed to use deep learning approaches. Convolutional neural networks had shown to outperform the state of the art results in medical image analysis [6]. To predict the characteristics and malignancy in CADx system, the architecture HSCNN, a deep hierarchical semantic convolutional neural network, proposed by Shen et al. [7], will be used.The Lung Image Database Consortium image collection (LIDC-IDRI) public dataset is frequently used as input for lung cancer CADx systems. The LIDC-IDRI consists of thoracic CT scans, presenting a lot of data's quantity and variability. In most of the nodules, this dataset has doctor's evaluations for 9 different characteristics. A recurrent problem in those evaluations is the subjectivity of the doctors' interpretation in what each characteristic is. In some characteristics, it can result in a great divergence in evaluations regarding the same nodule, which makes the inclusion of those evaluations as an input in CADx systems not useful as it could be. To reduce this subjectivity, it is proposed the creation of a metric that makes the characteristics classification more objective. For this, it is planned bibliographic and LIDC-IDRI dataset reviews. With that, taking into account this new metric, validated after by doctors from Hospital de São João, will be made a reclassification in LIDC-IDRI dataset. This way it could be possible to use as input all the relevant characteristics. The principal objective of this dissertation is to develop a lung nodule CADx system methodology which promotes the confidence of specialists in its use. This will be made classifying lung nodules according to relevant characteristics to diagnosis and malignancy. The reclassified LIDC-IDRI dataset will be used as an input for CADx system and the architecture used for predicting the characteristics and malignancy results will be the HSCNN. To measure the classification evaluation will be used sensitivity, sensibility, and area under the Receiver Operating Characteristic (ROC), curve. The proposed solution may be used for improving a CADx system, LNDetector, currently in development by the Center for Biomedical Engineering Research (C-BER) group from INESC-TEC in which this work will be developed.[1] - S. Sone M. Hasegawa and S. Takashima. Growth rate of small lung cancels detected on mass ct screening. Tire British Journal of Radiology, pages 1252-1259[2] - D. J. Bell S. E. Marley P. Guo H. Mann M. L. Scott L. H. Schwartz D. C. Ghiorghiu B. Zhao, Y. Tan. Exploring intra-and inter-reader variability in uni-dimensional, bi-dimensional, and volumetric measurements of solid tumors on ct scans reconstructed at different slice intervals. European journal of radiology 82, page 959-968, 2013[3] - H.T Winer-Muram. The solitary pulmonary nodule 1. Radiology, 239, pages 39-49, 2006.[4] - R. Yan J. Lee L. C. Chu C. T. Lin A. Hussien J. Rathmell B. Thomas C. Chen et al. P. Huang, S. Park. Added value of computer-aided ct image features for early lung cancer diagnosis with small pulmonary nodules: A matched case-control study. Radiology 286, page 286-295, 2017[5] - W Jorritsma, Fokie Cnossen, and Peter Van Ooijen. Improving the radiologist-cad interaction: Designing for appropriate trust. Clinical Radiology, 70, 10 2014.[6] - Tom Brosch, Youngjin Yoo, David Li, Anthony Traboulsee, and Roger Tam. Modeling the variability in brain morphology and lesion distribution in multiple sclerosis by deep learning. Volume 17, 09 2014.[7] - Simon Aberle Deni A. T. Bui Alex Hsu Willliam Shen, Shiwen X. Han. An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification. june 2018
publishDate 2019
dc.date.none.fl_str_mv 2019-09-26
2019-09-26T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/123391
TID:202389308
url https://hdl.handle.net/10216/123391
identifier_str_mv TID:202389308
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136144117465088