Educational Data Mining to Predict Bachelors Students’ Success
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/156451 |
Resumo: | Jacob, D., & Henriques, R. (2023). Educational Data Mining to Predict Bachelors Students’ Success. Emerging Science Journal, 7(Special Issue, "Current Issues, Trends, and New Ideas in Education"), 159-171. https://doi.org/10.28991/ESJ-2023-SIED2-013 |
id |
RCAP_0e28dae721c6e626e4951987f46fed3b |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/156451 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Educational Data Mining to Predict Bachelors Students’ SuccessAcademic SuccessStudent SuccessEducational Data MiningMachine LearningGeneralJacob, D., & Henriques, R. (2023). Educational Data Mining to Predict Bachelors Students’ Success. Emerging Science Journal, 7(Special Issue, "Current Issues, Trends, and New Ideas in Education"), 159-171. https://doi.org/10.28991/ESJ-2023-SIED2-013Predicting academic success is essential in higher education because it is perceived as a critical driver for scientific and technological advancement and countries’ economic and social development. This paper aims to retrieve the most relevant attributes for academic success by applying educational data mining (EDM) techniques to a Portuguese business school bachelor’s historical data. We propose two predictive models to classify each student regarding academic success at enrolment and the end of the first academic year. We implemented a SEMMA methodology and tried several machine learning algorithms, including decision trees, KNN, neural networks, and SVM. The best classifier for academic success at the entry-level reached is a random forest with an accuracy of 69%. At the end of the first academic year, an MLP artificial neural network’s best performance was achieved with an accuracy of 85%. The main findings show that at enrolment or the end of the first year, the grades and, thus, the student’s previous education and engagement with the school environment are decisive in achieving academic success.NOVA School of Business and Economics (NOVA SBE)NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNJacob, DavidHenriques, Roberto2023-08-09T22:18:55Z2023-07-272023-07-27T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article13application/pdfhttp://hdl.handle.net/10362/156451eng2610-9182PURE: 68437162https://doi.org/10.28991/ESJ-2023-SIED2-013info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:39:03Zoai:run.unl.pt:10362/156451Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:56:26.605721Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Educational Data Mining to Predict Bachelors Students’ Success |
title |
Educational Data Mining to Predict Bachelors Students’ Success |
spellingShingle |
Educational Data Mining to Predict Bachelors Students’ Success Jacob, David Academic Success Student Success Educational Data Mining Machine Learning General |
title_short |
Educational Data Mining to Predict Bachelors Students’ Success |
title_full |
Educational Data Mining to Predict Bachelors Students’ Success |
title_fullStr |
Educational Data Mining to Predict Bachelors Students’ Success |
title_full_unstemmed |
Educational Data Mining to Predict Bachelors Students’ Success |
title_sort |
Educational Data Mining to Predict Bachelors Students’ Success |
author |
Jacob, David |
author_facet |
Jacob, David Henriques, Roberto |
author_role |
author |
author2 |
Henriques, Roberto |
author2_role |
author |
dc.contributor.none.fl_str_mv |
NOVA School of Business and Economics (NOVA SBE) NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Jacob, David Henriques, Roberto |
dc.subject.por.fl_str_mv |
Academic Success Student Success Educational Data Mining Machine Learning General |
topic |
Academic Success Student Success Educational Data Mining Machine Learning General |
description |
Jacob, D., & Henriques, R. (2023). Educational Data Mining to Predict Bachelors Students’ Success. Emerging Science Journal, 7(Special Issue, "Current Issues, Trends, and New Ideas in Education"), 159-171. https://doi.org/10.28991/ESJ-2023-SIED2-013 |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-08-09T22:18:55Z 2023-07-27 2023-07-27T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/156451 |
url |
http://hdl.handle.net/10362/156451 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2610-9182 PURE: 68437162 https://doi.org/10.28991/ESJ-2023-SIED2-013 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
13 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138149792743424 |