Modeling and Optimization of Laser Spectroscopy of the Hyperfine Ground State in Muonic Hydrogen

Detalhes bibliográficos
Autor(a) principal: Ferro, Miguel Carmona Oliveira
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/143714
Resumo: The upcoming HyperMu experiment from the CREMA collaboration aims for a measurement of the ground-state hyperfine splitting (HFS) in muonic hydrogen (μp) by means of pulsed laser spectroscopy as a new route for probing the fine details of proton nuclear structure. In the proposed experimental scheme, the transition from the singlet to the triplet hyperfine state is driven by laser excitation and the excited μp atoms are afterwards quenched back to the singlet state through inelastic collisions with H2 molecules. The kinetic energy increase of the μp atoms after collisional de-excitation greatly increases their probability of detection within the muon’s lifetime, and the population of collisionally quenched μp atoms is therefore used as a model for the probability of a successful detection. In this work a simulation method was developed in order to calculate the combined probability of laser excitation followed by collisional de-excitation of a μp atom under different sets of possible experimental conditions, such as temperature, pressure, laser pulse fluence and time duration and cavity mirror reflectivity and diameter. The implemented simulation allows the calculation of this combined probability from the optical Bloch equations, which were derived for an electric field dependent on the laser and cavity conditions, while also accounting for collisional and Doppler effects. The combined probability was calculated for several sets of different experimental parameters, thus providing a new and alternative method for the optimization of both the temperature and pressure of the H2 gas, where the μp atoms undergo laser excitation, as well as the laser and cavity conditions.
id RCAP_0e9ce73d299e50b3e8eb727c9ee331aa
oai_identifier_str oai:run.unl.pt:10362/143714
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Modeling and Optimization of Laser Spectroscopy of the Hyperfine Ground State in Muonic HydrogenMuonic atomsHyperfine structureLaser excitationCollisional quenchingBloch equationsSimulationDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasThe upcoming HyperMu experiment from the CREMA collaboration aims for a measurement of the ground-state hyperfine splitting (HFS) in muonic hydrogen (μp) by means of pulsed laser spectroscopy as a new route for probing the fine details of proton nuclear structure. In the proposed experimental scheme, the transition from the singlet to the triplet hyperfine state is driven by laser excitation and the excited μp atoms are afterwards quenched back to the singlet state through inelastic collisions with H2 molecules. The kinetic energy increase of the μp atoms after collisional de-excitation greatly increases their probability of detection within the muon’s lifetime, and the population of collisionally quenched μp atoms is therefore used as a model for the probability of a successful detection. In this work a simulation method was developed in order to calculate the combined probability of laser excitation followed by collisional de-excitation of a μp atom under different sets of possible experimental conditions, such as temperature, pressure, laser pulse fluence and time duration and cavity mirror reflectivity and diameter. The implemented simulation allows the calculation of this combined probability from the optical Bloch equations, which were derived for an electric field dependent on the laser and cavity conditions, while also accounting for collisional and Doppler effects. The combined probability was calculated for several sets of different experimental parameters, thus providing a new and alternative method for the optimization of both the temperature and pressure of the H2 gas, where the μp atoms undergo laser excitation, as well as the laser and cavity conditions.O projeto HyperMu, proposto pela colaboração CREMA, tem como objetivo a medição da separação hiperfina (HFS) do estado fundamental em átomos de hidrogénio muónico (μp) através de espectroscopia laser como medida alternativa para a investigação dos detalhes da estrutura nuclear do protão. De acordo com o esquema experimental proposto, a transição entre os estados hiperfinos singleto e tripleto é obtida através de excitação laser, sendo que os átomos de μp excitados regressam depois ao estado singleto por via de colisões inelásticas com moleculas de H2. O acréscimo de energia cinética adquirido pelos átomos de μp após desexcitação aumenta significativamente a probabilidade de deteção durante o tempo de vida do muão. Como tal, a população de átomos de μp que atinge o estado de desexcitação é utilizada como modelo para a probabilidade de deteção no enquadramento desta experiência. Neste trabalho foi desenvolvido um método de simulação para calcular a probabilidade combinada de excitação e subsequente desexcitação de um átomo de μp sob diferentes condições experimentais, tais como, temperatura, pressão, fluência e duração do pulso laser, reflectividade e distância entre espelhos da cavidade laser. A simulação desenvolvida permite o cálculo desta probabilidade através da resolução das equações ópticas de Bloch, que foram derivadas para um campo elétrico dependente das condições do pulso e da cavidade laser, incluíndo também os efeitos dos diferentes tipos de colisão e o efeito de Doppler. A probabilidade combinada de excitação foi calculada para diferentes valores de diversos parâmetros experimentais proporcionando um novo método de optimização das condições de temperatura e pressão do gás de H2, onde os átomos de μp se encontraAmaro, PedroAntognini, AldoRUNFerro, Miguel Carmona Oliveira2022-09-14T10:14:05Z2022-012022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/143714enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:22:21Zoai:run.unl.pt:10362/143714Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:51:06.140301Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Modeling and Optimization of Laser Spectroscopy of the Hyperfine Ground State in Muonic Hydrogen
title Modeling and Optimization of Laser Spectroscopy of the Hyperfine Ground State in Muonic Hydrogen
spellingShingle Modeling and Optimization of Laser Spectroscopy of the Hyperfine Ground State in Muonic Hydrogen
Ferro, Miguel Carmona Oliveira
Muonic atoms
Hyperfine structure
Laser excitation
Collisional quenching
Bloch equations
Simulation
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
title_short Modeling and Optimization of Laser Spectroscopy of the Hyperfine Ground State in Muonic Hydrogen
title_full Modeling and Optimization of Laser Spectroscopy of the Hyperfine Ground State in Muonic Hydrogen
title_fullStr Modeling and Optimization of Laser Spectroscopy of the Hyperfine Ground State in Muonic Hydrogen
title_full_unstemmed Modeling and Optimization of Laser Spectroscopy of the Hyperfine Ground State in Muonic Hydrogen
title_sort Modeling and Optimization of Laser Spectroscopy of the Hyperfine Ground State in Muonic Hydrogen
author Ferro, Miguel Carmona Oliveira
author_facet Ferro, Miguel Carmona Oliveira
author_role author
dc.contributor.none.fl_str_mv Amaro, Pedro
Antognini, Aldo
RUN
dc.contributor.author.fl_str_mv Ferro, Miguel Carmona Oliveira
dc.subject.por.fl_str_mv Muonic atoms
Hyperfine structure
Laser excitation
Collisional quenching
Bloch equations
Simulation
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
topic Muonic atoms
Hyperfine structure
Laser excitation
Collisional quenching
Bloch equations
Simulation
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
description The upcoming HyperMu experiment from the CREMA collaboration aims for a measurement of the ground-state hyperfine splitting (HFS) in muonic hydrogen (μp) by means of pulsed laser spectroscopy as a new route for probing the fine details of proton nuclear structure. In the proposed experimental scheme, the transition from the singlet to the triplet hyperfine state is driven by laser excitation and the excited μp atoms are afterwards quenched back to the singlet state through inelastic collisions with H2 molecules. The kinetic energy increase of the μp atoms after collisional de-excitation greatly increases their probability of detection within the muon’s lifetime, and the population of collisionally quenched μp atoms is therefore used as a model for the probability of a successful detection. In this work a simulation method was developed in order to calculate the combined probability of laser excitation followed by collisional de-excitation of a μp atom under different sets of possible experimental conditions, such as temperature, pressure, laser pulse fluence and time duration and cavity mirror reflectivity and diameter. The implemented simulation allows the calculation of this combined probability from the optical Bloch equations, which were derived for an electric field dependent on the laser and cavity conditions, while also accounting for collisional and Doppler effects. The combined probability was calculated for several sets of different experimental parameters, thus providing a new and alternative method for the optimization of both the temperature and pressure of the H2 gas, where the μp atoms undergo laser excitation, as well as the laser and cavity conditions.
publishDate 2022
dc.date.none.fl_str_mv 2022-09-14T10:14:05Z
2022-01
2022-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/143714
url http://hdl.handle.net/10362/143714
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138106156253184