Motion planning in connected sums of real projective spaces

Detalhes bibliográficos
Autor(a) principal: Cohen, Daniel C.
Data de Publicação: 2019
Outros Autores: Vandembroucq, Lucile
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/63256
Resumo: The topological complexity TC(X) is a homotopy invariant of a topological space X, motivated by robotics, and providing a measure of the navigational complexity of X. The topological complexity of a connected sum of real projective planes, that is, a high genus nonorientable surface, is known to be maximal. We use algebraic tools to show that the analogous result holds for connected sums of higher dimensional real projective spaces.
id RCAP_0ea3580efb00d659fdf7a5a76e47822b
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/63256
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Motion planning in connected sums of real projective spacesTopological complexityReal projective spaceConnected sumCiências Naturais::MatemáticasThe topological complexity TC(X) is a homotopy invariant of a topological space X, motivated by robotics, and providing a measure of the navigational complexity of X. The topological complexity of a connected sum of real projective planes, that is, a high genus nonorientable surface, is known to be maximal. We use algebraic tools to show that the analogous result holds for connected sums of higher dimensional real projective spaces.The first author was partially supported by the Simons Foundation and by the Mathematisches Forschungsinstitut Oberwolfach. The second author was partially supported by FCT-UID/MAT/00013/2013 and by the Polish Na- tional Science Centre grant 2016/21/P/ST 1/03460 within the European Union’s Horizon 2020 re- search and innovation programme under the Marie Skłodowska-Curie grant agreement No. 665778.Auburn UniversityUniversidade do MinhoCohen, Daniel C.Vandembroucq, Lucile20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/63256engTopology Proceedings 54 (2019), 323-334.0146-41242331-1290http://topology.auburn.edu/tp/reprints/v54/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:14:48Zoai:repositorium.sdum.uminho.pt:1822/63256Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:07:08.670979Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Motion planning in connected sums of real projective spaces
title Motion planning in connected sums of real projective spaces
spellingShingle Motion planning in connected sums of real projective spaces
Cohen, Daniel C.
Topological complexity
Real projective space
Connected sum
Ciências Naturais::Matemáticas
title_short Motion planning in connected sums of real projective spaces
title_full Motion planning in connected sums of real projective spaces
title_fullStr Motion planning in connected sums of real projective spaces
title_full_unstemmed Motion planning in connected sums of real projective spaces
title_sort Motion planning in connected sums of real projective spaces
author Cohen, Daniel C.
author_facet Cohen, Daniel C.
Vandembroucq, Lucile
author_role author
author2 Vandembroucq, Lucile
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Cohen, Daniel C.
Vandembroucq, Lucile
dc.subject.por.fl_str_mv Topological complexity
Real projective space
Connected sum
Ciências Naturais::Matemáticas
topic Topological complexity
Real projective space
Connected sum
Ciências Naturais::Matemáticas
description The topological complexity TC(X) is a homotopy invariant of a topological space X, motivated by robotics, and providing a measure of the navigational complexity of X. The topological complexity of a connected sum of real projective planes, that is, a high genus nonorientable surface, is known to be maximal. We use algebraic tools to show that the analogous result holds for connected sums of higher dimensional real projective spaces.
publishDate 2019
dc.date.none.fl_str_mv 2019
2019-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/63256
url http://hdl.handle.net/1822/63256
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Topology Proceedings 54 (2019), 323-334.
0146-4124
2331-1290
http://topology.auburn.edu/tp/reprints/v54/
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Auburn University
publisher.none.fl_str_mv Auburn University
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132488767897600