Motion planning in connected sums of real projective spaces
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/63256 |
Resumo: | The topological complexity TC(X) is a homotopy invariant of a topological space X, motivated by robotics, and providing a measure of the navigational complexity of X. The topological complexity of a connected sum of real projective planes, that is, a high genus nonorientable surface, is known to be maximal. We use algebraic tools to show that the analogous result holds for connected sums of higher dimensional real projective spaces. |
id |
RCAP_0ea3580efb00d659fdf7a5a76e47822b |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/63256 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Motion planning in connected sums of real projective spacesTopological complexityReal projective spaceConnected sumCiências Naturais::MatemáticasThe topological complexity TC(X) is a homotopy invariant of a topological space X, motivated by robotics, and providing a measure of the navigational complexity of X. The topological complexity of a connected sum of real projective planes, that is, a high genus nonorientable surface, is known to be maximal. We use algebraic tools to show that the analogous result holds for connected sums of higher dimensional real projective spaces.The first author was partially supported by the Simons Foundation and by the Mathematisches Forschungsinstitut Oberwolfach. The second author was partially supported by FCT-UID/MAT/00013/2013 and by the Polish Na- tional Science Centre grant 2016/21/P/ST 1/03460 within the European Union’s Horizon 2020 re- search and innovation programme under the Marie Skłodowska-Curie grant agreement No. 665778.Auburn UniversityUniversidade do MinhoCohen, Daniel C.Vandembroucq, Lucile20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/63256engTopology Proceedings 54 (2019), 323-334.0146-41242331-1290http://topology.auburn.edu/tp/reprints/v54/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:14:48Zoai:repositorium.sdum.uminho.pt:1822/63256Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:07:08.670979Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Motion planning in connected sums of real projective spaces |
title |
Motion planning in connected sums of real projective spaces |
spellingShingle |
Motion planning in connected sums of real projective spaces Cohen, Daniel C. Topological complexity Real projective space Connected sum Ciências Naturais::Matemáticas |
title_short |
Motion planning in connected sums of real projective spaces |
title_full |
Motion planning in connected sums of real projective spaces |
title_fullStr |
Motion planning in connected sums of real projective spaces |
title_full_unstemmed |
Motion planning in connected sums of real projective spaces |
title_sort |
Motion planning in connected sums of real projective spaces |
author |
Cohen, Daniel C. |
author_facet |
Cohen, Daniel C. Vandembroucq, Lucile |
author_role |
author |
author2 |
Vandembroucq, Lucile |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Cohen, Daniel C. Vandembroucq, Lucile |
dc.subject.por.fl_str_mv |
Topological complexity Real projective space Connected sum Ciências Naturais::Matemáticas |
topic |
Topological complexity Real projective space Connected sum Ciências Naturais::Matemáticas |
description |
The topological complexity TC(X) is a homotopy invariant of a topological space X, motivated by robotics, and providing a measure of the navigational complexity of X. The topological complexity of a connected sum of real projective planes, that is, a high genus nonorientable surface, is known to be maximal. We use algebraic tools to show that the analogous result holds for connected sums of higher dimensional real projective spaces. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2019-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/63256 |
url |
http://hdl.handle.net/1822/63256 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Topology Proceedings 54 (2019), 323-334. 0146-4124 2331-1290 http://topology.auburn.edu/tp/reprints/v54/ |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Auburn University |
publisher.none.fl_str_mv |
Auburn University |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132488767897600 |