A numeric-based machine learning design for detecting organized retail fraud in digital marketplaces

Detalhes bibliográficos
Autor(a) principal: Mutemi, Abed
Data de Publicação: 2023
Outros Autores: Bacao, Fernando
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/156397
Resumo: Mutemi, A., & Bacao, F. (2023). A numeric-based machine learning design for detecting organized retail fraud in digital marketplaces. Scientific Reports, 13(1), 1-16. [12499]. https://doi.org/10.1038/s41598-023-38304-5
id RCAP_0f00b7955e4ff44f1600f833478bdb8d
oai_identifier_str oai:run.unl.pt:10362/156397
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A numeric-based machine learning design for detecting organized retail fraud in digital marketplacesGeneralSDG 16 - Peace, Justice and Strong InstitutionsMutemi, A., & Bacao, F. (2023). A numeric-based machine learning design for detecting organized retail fraud in digital marketplaces. Scientific Reports, 13(1), 1-16. [12499]. https://doi.org/10.1038/s41598-023-38304-5Organized retail crime (ORC) is a significant issue for retailers, marketplace platforms, and consumers. Its prevalence and influence have increased fast in lockstep with the expansion of online commerce, digital devices, and communication platforms. Today, it is a costly affair, wreaking havoc on enterprises’ overall revenues and continually jeopardizing community security. These negative consequences are set to rocket to unprecedented heights as more people and devices connect to the Internet. Detecting and responding to these terrible acts as early as possible is critical for protecting consumers and businesses while also keeping an eye on rising patterns and fraud. The issue of detecting fraud in general has been studied widely, especially in financial services, but studies focusing on organized retail crimes are extremely rare in literature. To contribute to the knowledge base in this area, we present a scalable machine learning strategy for detecting and isolating ORC listings on a prominent marketplace platform by merchants committing organized retail crimes or fraud. We employ a supervised learning approach to classify postings as fraudulent or real based on past data from buyer and seller behaviors and transactions on the platform. The proposed framework combines bespoke data preprocessing procedures, feature selection methods, and state-of-the-art class asymmetry resolution techniques to search for aligned classification algorithms capable of discriminating between fraudulent and legitimate listings in this context. Our best detection model obtains a recall score of 0.97 on the holdout set and 0.94 on the out-of-sample testing data set. We achieve these results based on a select set of 45 features out of 58.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNMutemi, AbedBacao, Fernando2023-08-07T22:17:39Z2023-08-022023-08-02T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article16application/pdfhttp://hdl.handle.net/10362/156397eng2045-2322PURE: 68264720https://doi.org/10.1038/s41598-023-38304-5info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:39:02Zoai:run.unl.pt:10362/156397Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:56:26.236575Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A numeric-based machine learning design for detecting organized retail fraud in digital marketplaces
title A numeric-based machine learning design for detecting organized retail fraud in digital marketplaces
spellingShingle A numeric-based machine learning design for detecting organized retail fraud in digital marketplaces
Mutemi, Abed
General
SDG 16 - Peace, Justice and Strong Institutions
title_short A numeric-based machine learning design for detecting organized retail fraud in digital marketplaces
title_full A numeric-based machine learning design for detecting organized retail fraud in digital marketplaces
title_fullStr A numeric-based machine learning design for detecting organized retail fraud in digital marketplaces
title_full_unstemmed A numeric-based machine learning design for detecting organized retail fraud in digital marketplaces
title_sort A numeric-based machine learning design for detecting organized retail fraud in digital marketplaces
author Mutemi, Abed
author_facet Mutemi, Abed
Bacao, Fernando
author_role author
author2 Bacao, Fernando
author2_role author
dc.contributor.none.fl_str_mv NOVA Information Management School (NOVA IMS)
Information Management Research Center (MagIC) - NOVA Information Management School
RUN
dc.contributor.author.fl_str_mv Mutemi, Abed
Bacao, Fernando
dc.subject.por.fl_str_mv General
SDG 16 - Peace, Justice and Strong Institutions
topic General
SDG 16 - Peace, Justice and Strong Institutions
description Mutemi, A., & Bacao, F. (2023). A numeric-based machine learning design for detecting organized retail fraud in digital marketplaces. Scientific Reports, 13(1), 1-16. [12499]. https://doi.org/10.1038/s41598-023-38304-5
publishDate 2023
dc.date.none.fl_str_mv 2023-08-07T22:17:39Z
2023-08-02
2023-08-02T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/156397
url http://hdl.handle.net/10362/156397
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2045-2322
PURE: 68264720
https://doi.org/10.1038/s41598-023-38304-5
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 16
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138149783306240