Inhibition Action of 1H-1,2,4-triazol-4-amine, 3, 5-diphenyl-N-(phenyl methylene) on Ordinary Steel Corrosion in an Acidic Medium

Detalhes bibliográficos
Autor(a) principal: Elkhotfi,Y.
Data de Publicação: 2022
Outros Autores: Boubekraoui,H., Forsal,I., Rakib,E. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042022000300141
Resumo: Abstract A new corrosion inhibitor, namely, 1H-1,2,4-triazol-4-amine, 3, 5-diphenyl-N-(phenyl methylene) (HTADP), has been synthesised, and its inhibiting action on ordinary steel corrosion in an acidic media has been investigated by weight loss and various electrochemical techniques. The obtained results revealed that this organic compound is a very good inhibitor. Its inhibition efficiency (IE) exceeded 90%, even at very low concentrations. HTADP was able to reduce steel corrosion more effectively in 1 M HCl. Potentiodynamic polarization studies showed that HTADP is a mixed type inhibitor, predominantly influenced by the cathodic process. The adsorption of this inhibitor onto the ordinary steel surface in 1 M HCl was found to follow the Langmuir’s adsorption isotherm. The adsorption and activation thermodynamic data were determined and discussed. A protective film was formed on the steel surface, which changed the processes at the metal-solution interface.
id RCAP_100febe1905b3e7cf1524dc7a72c130b
oai_identifier_str oai:scielo:S0872-19042022000300141
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Inhibition Action of 1H-1,2,4-triazol-4-amine, 3, 5-diphenyl-N-(phenyl methylene) on Ordinary Steel Corrosion in an Acidic Mediumcorrosionsteelinhibitionadsorptionacidic mediaAbstract A new corrosion inhibitor, namely, 1H-1,2,4-triazol-4-amine, 3, 5-diphenyl-N-(phenyl methylene) (HTADP), has been synthesised, and its inhibiting action on ordinary steel corrosion in an acidic media has been investigated by weight loss and various electrochemical techniques. The obtained results revealed that this organic compound is a very good inhibitor. Its inhibition efficiency (IE) exceeded 90%, even at very low concentrations. HTADP was able to reduce steel corrosion more effectively in 1 M HCl. Potentiodynamic polarization studies showed that HTADP is a mixed type inhibitor, predominantly influenced by the cathodic process. The adsorption of this inhibitor onto the ordinary steel surface in 1 M HCl was found to follow the Langmuir’s adsorption isotherm. The adsorption and activation thermodynamic data were determined and discussed. A protective film was formed on the steel surface, which changed the processes at the metal-solution interface.Sociedade Portuguesa de Electroquímica2022-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articletext/htmlhttp://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042022000300141Portugaliae Electrochimica Acta v.40 n.3 2022reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttp://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042022000300141Elkhotfi,Y.Boubekraoui,H.Forsal,I.Rakib,E. M.info:eu-repo/semantics/openAccess2024-02-06T17:07:37Zoai:scielo:S0872-19042022000300141Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:20:28.964253Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Inhibition Action of 1H-1,2,4-triazol-4-amine, 3, 5-diphenyl-N-(phenyl methylene) on Ordinary Steel Corrosion in an Acidic Medium
title Inhibition Action of 1H-1,2,4-triazol-4-amine, 3, 5-diphenyl-N-(phenyl methylene) on Ordinary Steel Corrosion in an Acidic Medium
spellingShingle Inhibition Action of 1H-1,2,4-triazol-4-amine, 3, 5-diphenyl-N-(phenyl methylene) on Ordinary Steel Corrosion in an Acidic Medium
Elkhotfi,Y.
corrosion
steel
inhibition
adsorption
acidic media
title_short Inhibition Action of 1H-1,2,4-triazol-4-amine, 3, 5-diphenyl-N-(phenyl methylene) on Ordinary Steel Corrosion in an Acidic Medium
title_full Inhibition Action of 1H-1,2,4-triazol-4-amine, 3, 5-diphenyl-N-(phenyl methylene) on Ordinary Steel Corrosion in an Acidic Medium
title_fullStr Inhibition Action of 1H-1,2,4-triazol-4-amine, 3, 5-diphenyl-N-(phenyl methylene) on Ordinary Steel Corrosion in an Acidic Medium
title_full_unstemmed Inhibition Action of 1H-1,2,4-triazol-4-amine, 3, 5-diphenyl-N-(phenyl methylene) on Ordinary Steel Corrosion in an Acidic Medium
title_sort Inhibition Action of 1H-1,2,4-triazol-4-amine, 3, 5-diphenyl-N-(phenyl methylene) on Ordinary Steel Corrosion in an Acidic Medium
author Elkhotfi,Y.
author_facet Elkhotfi,Y.
Boubekraoui,H.
Forsal,I.
Rakib,E. M.
author_role author
author2 Boubekraoui,H.
Forsal,I.
Rakib,E. M.
author2_role author
author
author
dc.contributor.author.fl_str_mv Elkhotfi,Y.
Boubekraoui,H.
Forsal,I.
Rakib,E. M.
dc.subject.por.fl_str_mv corrosion
steel
inhibition
adsorption
acidic media
topic corrosion
steel
inhibition
adsorption
acidic media
description Abstract A new corrosion inhibitor, namely, 1H-1,2,4-triazol-4-amine, 3, 5-diphenyl-N-(phenyl methylene) (HTADP), has been synthesised, and its inhibiting action on ordinary steel corrosion in an acidic media has been investigated by weight loss and various electrochemical techniques. The obtained results revealed that this organic compound is a very good inhibitor. Its inhibition efficiency (IE) exceeded 90%, even at very low concentrations. HTADP was able to reduce steel corrosion more effectively in 1 M HCl. Potentiodynamic polarization studies showed that HTADP is a mixed type inhibitor, predominantly influenced by the cathodic process. The adsorption of this inhibitor onto the ordinary steel surface in 1 M HCl was found to follow the Langmuir’s adsorption isotherm. The adsorption and activation thermodynamic data were determined and discussed. A protective film was formed on the steel surface, which changed the processes at the metal-solution interface.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042022000300141
url http://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042022000300141
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042022000300141
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Portuguesa de Electroquímica
publisher.none.fl_str_mv Sociedade Portuguesa de Electroquímica
dc.source.none.fl_str_mv Portugaliae Electrochimica Acta v.40 n.3 2022
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137292469665792