A versatile method for bladder segmentation in computed tomography two-dimensional images under adverse conditions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/106304 |
Resumo: | This article presents the design and evaluation of an algorithm for urinary bladder segmentation in medical images, from contrastless computed tomography studies of patients suffering from bladder wall tumours. These situations require versatile methods of segmentation, able to adapt to the structural changes the tumours provoke in the bladder wall, reflected as irregularities on the images obtained, creating adversities to the segmentation process. This semi-automatic method uses fuzzy c-means clustering, a Gaussian-curve-based intensity transformation, and active contour models, requiring only the physician's input of a single seed point for each anatomical view, in order to segment the bladder volume in all frames that include it. The performance of the method was evaluated on eight patients of The Cancer Genome Atlas-Urothelial Bladder Carcinoma collection, achieving approximately 79% of successful segmentations for small tumour patients (below 2.0 cm of diameter) and approximately 72% between 2.0 and 2.9 cm. Successful segmentations for small tumour patients presented an average of 3.7 mm Hausdorff distance and 91.0% degree of overlap. The promising performance attained, especially for small tumour patients, revealed a high potential of this method to serve as basis for an effective early-stage bladder wall tumour computer-aided diagnosis system. |
id |
RCAP_10152beba7acb5076396c3a5d1549270 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/106304 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A versatile method for bladder segmentation in computed tomography two-dimensional images under adverse conditionsCiências Tecnológicas, Ciências médicas e da saúdeTechnological sciences, Medical and Health sciencesThis article presents the design and evaluation of an algorithm for urinary bladder segmentation in medical images, from contrastless computed tomography studies of patients suffering from bladder wall tumours. These situations require versatile methods of segmentation, able to adapt to the structural changes the tumours provoke in the bladder wall, reflected as irregularities on the images obtained, creating adversities to the segmentation process. This semi-automatic method uses fuzzy c-means clustering, a Gaussian-curve-based intensity transformation, and active contour models, requiring only the physician's input of a single seed point for each anatomical view, in order to segment the bladder volume in all frames that include it. The performance of the method was evaluated on eight patients of The Cancer Genome Atlas-Urothelial Bladder Carcinoma collection, achieving approximately 79% of successful segmentations for small tumour patients (below 2.0 cm of diameter) and approximately 72% between 2.0 and 2.9 cm. Successful segmentations for small tumour patients presented an average of 3.7 mm Hausdorff distance and 91.0% degree of overlap. The promising performance attained, especially for small tumour patients, revealed a high potential of this method to serve as basis for an effective early-stage bladder wall tumour computer-aided diagnosis system.2017-09-012017-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleimage/pngapplication/pdfhttps://hdl.handle.net/10216/106304eng0954-411910.1177/0954411917714294João Ribeiro PintoJoão Manuel R. S. Tavaresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T13:01:29Zoai:repositorio-aberto.up.pt:10216/106304Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:31:58.548066Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A versatile method for bladder segmentation in computed tomography two-dimensional images under adverse conditions |
title |
A versatile method for bladder segmentation in computed tomography two-dimensional images under adverse conditions |
spellingShingle |
A versatile method for bladder segmentation in computed tomography two-dimensional images under adverse conditions João Ribeiro Pinto Ciências Tecnológicas, Ciências médicas e da saúde Technological sciences, Medical and Health sciences |
title_short |
A versatile method for bladder segmentation in computed tomography two-dimensional images under adverse conditions |
title_full |
A versatile method for bladder segmentation in computed tomography two-dimensional images under adverse conditions |
title_fullStr |
A versatile method for bladder segmentation in computed tomography two-dimensional images under adverse conditions |
title_full_unstemmed |
A versatile method for bladder segmentation in computed tomography two-dimensional images under adverse conditions |
title_sort |
A versatile method for bladder segmentation in computed tomography two-dimensional images under adverse conditions |
author |
João Ribeiro Pinto |
author_facet |
João Ribeiro Pinto João Manuel R. S. Tavares |
author_role |
author |
author2 |
João Manuel R. S. Tavares |
author2_role |
author |
dc.contributor.author.fl_str_mv |
João Ribeiro Pinto João Manuel R. S. Tavares |
dc.subject.por.fl_str_mv |
Ciências Tecnológicas, Ciências médicas e da saúde Technological sciences, Medical and Health sciences |
topic |
Ciências Tecnológicas, Ciências médicas e da saúde Technological sciences, Medical and Health sciences |
description |
This article presents the design and evaluation of an algorithm for urinary bladder segmentation in medical images, from contrastless computed tomography studies of patients suffering from bladder wall tumours. These situations require versatile methods of segmentation, able to adapt to the structural changes the tumours provoke in the bladder wall, reflected as irregularities on the images obtained, creating adversities to the segmentation process. This semi-automatic method uses fuzzy c-means clustering, a Gaussian-curve-based intensity transformation, and active contour models, requiring only the physician's input of a single seed point for each anatomical view, in order to segment the bladder volume in all frames that include it. The performance of the method was evaluated on eight patients of The Cancer Genome Atlas-Urothelial Bladder Carcinoma collection, achieving approximately 79% of successful segmentations for small tumour patients (below 2.0 cm of diameter) and approximately 72% between 2.0 and 2.9 cm. Successful segmentations for small tumour patients presented an average of 3.7 mm Hausdorff distance and 91.0% degree of overlap. The promising performance attained, especially for small tumour patients, revealed a high potential of this method to serve as basis for an effective early-stage bladder wall tumour computer-aided diagnosis system. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09-01 2017-09-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/106304 |
url |
https://hdl.handle.net/10216/106304 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0954-4119 10.1177/0954411917714294 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
image/png application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135630062518272 |