Development and characterization of Poly(L-lactic acid) (PLLA) platforms for bone tissue engineering

Detalhes bibliográficos
Autor(a) principal: Paradis, Mathieu
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/15771
Resumo: The development of scaffolds based on biomaterials is a promising strategy for Tissue Engineering and cellular regeneration. This work focuses on Bone Tissue Engineering, the aim is to develop electrically tailored biomaterials with different crystalline and electric features, and study their impacts onto cell biological behavior, so as to predict the materials output in the enhancement of bone tissue regeneration. It is accepted that bone exhibits piezoelectricity, a property that has been proved to be involved in bone growth/repair mechanism regulation. In addition electrical stimulations have been proved to influence bone growth and repair. Piezoelectric materials are therefore widely investigated for a potential use in bone tissue engineering. The main goal is the development of novel strategies to produce and employ piezoelectric biomaterials, with detailed knowledge of mechanisms involved in cell-material interaction. In the current work, poly (L-lactic) acid (PLLA), a synthetic semi-crystalline polymer, exhibiting biodegradibility, biocompatibility and piezoelectricity is studied and proposed as a promoter of enhanced tissue regeneration. PLLA has already been approved for implantation in human body by the Food and Drug Administration (FDA), and at the moment it is being used in several clinical strategies. The present study consists of first preparing films with different degrees of crystallinity and characterizing these PLLA films, in terms of surface and structural properties, and subsequently assessing the behavior of cells in terms of viability, proliferation, morphology and mineralization for each PLLA configuration. PLLA films were prepared using the solvent cast technique and submitted to different thermal treatments in order to obtain different degrees of crystallinity. Those platforms were then electrically poled, positively and negatively, by corona discharge in order to tailor their electrical properties. The cellular assays were conducted by using two different osteoblast cell lines grown directly onto the PLLA films:Human osteoblast Hob, a primary cell culture and Human osteosarcoma MG-63 cell line. This thesis gives also a comprehensive introduction to the area of Bone Tissue Engineering and provides a review of the work done in this field in the past until today, in that same field, including the one related with bone’s piezoelectricity. Then the experimental part deals with the effects of the crystallinity degrees and of the polarization in terms of surface properties and cellular bio assays. Three different degrees of crystallinity, and three different polarization conditions were prepared; which results in 9 different configurations under investigation.
id RCAP_1069f58d06270a79b5e0a639f01d561d
oai_identifier_str oai:ria.ua.pt:10773/15771
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Development and characterization of Poly(L-lactic acid) (PLLA) platforms for bone tissue engineeringCiência e engenharia de materiaisBiomateriaisRegeneração ósseaPiezoelectricidadeThe development of scaffolds based on biomaterials is a promising strategy for Tissue Engineering and cellular regeneration. This work focuses on Bone Tissue Engineering, the aim is to develop electrically tailored biomaterials with different crystalline and electric features, and study their impacts onto cell biological behavior, so as to predict the materials output in the enhancement of bone tissue regeneration. It is accepted that bone exhibits piezoelectricity, a property that has been proved to be involved in bone growth/repair mechanism regulation. In addition electrical stimulations have been proved to influence bone growth and repair. Piezoelectric materials are therefore widely investigated for a potential use in bone tissue engineering. The main goal is the development of novel strategies to produce and employ piezoelectric biomaterials, with detailed knowledge of mechanisms involved in cell-material interaction. In the current work, poly (L-lactic) acid (PLLA), a synthetic semi-crystalline polymer, exhibiting biodegradibility, biocompatibility and piezoelectricity is studied and proposed as a promoter of enhanced tissue regeneration. PLLA has already been approved for implantation in human body by the Food and Drug Administration (FDA), and at the moment it is being used in several clinical strategies. The present study consists of first preparing films with different degrees of crystallinity and characterizing these PLLA films, in terms of surface and structural properties, and subsequently assessing the behavior of cells in terms of viability, proliferation, morphology and mineralization for each PLLA configuration. PLLA films were prepared using the solvent cast technique and submitted to different thermal treatments in order to obtain different degrees of crystallinity. Those platforms were then electrically poled, positively and negatively, by corona discharge in order to tailor their electrical properties. The cellular assays were conducted by using two different osteoblast cell lines grown directly onto the PLLA films:Human osteoblast Hob, a primary cell culture and Human osteosarcoma MG-63 cell line. This thesis gives also a comprehensive introduction to the area of Bone Tissue Engineering and provides a review of the work done in this field in the past until today, in that same field, including the one related with bone’s piezoelectricity. Then the experimental part deals with the effects of the crystallinity degrees and of the polarization in terms of surface properties and cellular bio assays. Three different degrees of crystallinity, and three different polarization conditions were prepared; which results in 9 different configurations under investigation.O desenvolvimento de scaffolds baseados em biomateriais é uma estratégia promissora para a engenharia de tecidos e entrega de fármacos. Este trabalho centra-se na engenharia de tecido ósseo, o objectivo é desenvolver biomateriais electricamente modificados, com diferentes valores de cristalinidade e propriedades eléctricas, e estudar o seu impacto no comportamento biológico da célula de modo a prever o efeito desses materiais na regeneração do tecido. É já amplamente conhecido o fato de o osso possuir características piezoeléctricas, e reconhecido que estas contribuem para os mecanismos de regulação do crescimento e reparação do tecido ósseo. Além disso é um facto aceite que a estimulação eléctrica também influencia o crescimento e reparação do osso. Os materiais piezoeléctricos apresentam assim vantagens quanto à sua utilização em engenharia de tecido ósseo, e têm vindo a ser estudados para esse efeito. No presente trabalho foram desenvolvidos filmes de ácido poli-L-láctico (PLLA), um polímero sintético semi-cristalino que é biocompatível, biodegradável, e piezoeléctrico, que se apresenta como promotor da regeneração óssea. O PLLA é um material aceite para implantes em humanos pela “Food and Drug Administration” (FDA), e está já a ser utilizado em várias estratégias e produtos para uso clínico. O presente estudo consiste numa primeira fase de preparação e caracterização de filmes de PLLA em termos de propriedades estruturais e de superfície, e numa segunda fase de avaliação do comportamento celular em termos de viabilidade, proliferação, morfologia e mineralização, para cada uma das configurações de PLLA obtidas. Os filmes foram preparados pelo método de evaporação do solvente com molde, e submetidos a diferentes tratamentos térmicos de forma a obter diferentes valores de cristalinidade. Estas plataformas foram depois electricamente polarizadas, positiva e negativamente, por meio de descarga de corona para modular as suas propriedades eléctricas. Os ensaios celulares foram realizados utilizando duas linhas celulares osteoblásticas, em contacto direto com as superfícies de PLLA: Osteoblastos Humanos - Hob, cultura primária de células, e linha de Osteosarcoma Humano - MG-63. Este trabalho também inclui uma introdução teórica para área da Engenharia de Tecido Ósseo, e resume o trabalho de investigação realizado nesta área até hoje incluindo aquele relacionado com a piezoelectricidade do tecido ósseo. A parte experimental dedica-se aos efeitos do grau de cristalinidade e da polarização nas propriedades de superfície do material e nos ensaios biológicos. Foram estudadas nove configurações, originadas por três valores de cristalinidade: 0, 7 e 35%, e três tipos de polarização: positiva, negativa e neutra (apenas com o tratamento térmico análogo).Universidade de Aveiro2018-07-20T14:00:54Z2015-07-27T00:00:00Z2015-07-272017-07-20T15:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/15771TID:201586886engParadis, Mathieuinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:29:16Zoai:ria.ua.pt:10773/15771Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:51:04.352799Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Development and characterization of Poly(L-lactic acid) (PLLA) platforms for bone tissue engineering
title Development and characterization of Poly(L-lactic acid) (PLLA) platforms for bone tissue engineering
spellingShingle Development and characterization of Poly(L-lactic acid) (PLLA) platforms for bone tissue engineering
Paradis, Mathieu
Ciência e engenharia de materiais
Biomateriais
Regeneração óssea
Piezoelectricidade
title_short Development and characterization of Poly(L-lactic acid) (PLLA) platforms for bone tissue engineering
title_full Development and characterization of Poly(L-lactic acid) (PLLA) platforms for bone tissue engineering
title_fullStr Development and characterization of Poly(L-lactic acid) (PLLA) platforms for bone tissue engineering
title_full_unstemmed Development and characterization of Poly(L-lactic acid) (PLLA) platforms for bone tissue engineering
title_sort Development and characterization of Poly(L-lactic acid) (PLLA) platforms for bone tissue engineering
author Paradis, Mathieu
author_facet Paradis, Mathieu
author_role author
dc.contributor.author.fl_str_mv Paradis, Mathieu
dc.subject.por.fl_str_mv Ciência e engenharia de materiais
Biomateriais
Regeneração óssea
Piezoelectricidade
topic Ciência e engenharia de materiais
Biomateriais
Regeneração óssea
Piezoelectricidade
description The development of scaffolds based on biomaterials is a promising strategy for Tissue Engineering and cellular regeneration. This work focuses on Bone Tissue Engineering, the aim is to develop electrically tailored biomaterials with different crystalline and electric features, and study their impacts onto cell biological behavior, so as to predict the materials output in the enhancement of bone tissue regeneration. It is accepted that bone exhibits piezoelectricity, a property that has been proved to be involved in bone growth/repair mechanism regulation. In addition electrical stimulations have been proved to influence bone growth and repair. Piezoelectric materials are therefore widely investigated for a potential use in bone tissue engineering. The main goal is the development of novel strategies to produce and employ piezoelectric biomaterials, with detailed knowledge of mechanisms involved in cell-material interaction. In the current work, poly (L-lactic) acid (PLLA), a synthetic semi-crystalline polymer, exhibiting biodegradibility, biocompatibility and piezoelectricity is studied and proposed as a promoter of enhanced tissue regeneration. PLLA has already been approved for implantation in human body by the Food and Drug Administration (FDA), and at the moment it is being used in several clinical strategies. The present study consists of first preparing films with different degrees of crystallinity and characterizing these PLLA films, in terms of surface and structural properties, and subsequently assessing the behavior of cells in terms of viability, proliferation, morphology and mineralization for each PLLA configuration. PLLA films were prepared using the solvent cast technique and submitted to different thermal treatments in order to obtain different degrees of crystallinity. Those platforms were then electrically poled, positively and negatively, by corona discharge in order to tailor their electrical properties. The cellular assays were conducted by using two different osteoblast cell lines grown directly onto the PLLA films:Human osteoblast Hob, a primary cell culture and Human osteosarcoma MG-63 cell line. This thesis gives also a comprehensive introduction to the area of Bone Tissue Engineering and provides a review of the work done in this field in the past until today, in that same field, including the one related with bone’s piezoelectricity. Then the experimental part deals with the effects of the crystallinity degrees and of the polarization in terms of surface properties and cellular bio assays. Three different degrees of crystallinity, and three different polarization conditions were prepared; which results in 9 different configurations under investigation.
publishDate 2015
dc.date.none.fl_str_mv 2015-07-27T00:00:00Z
2015-07-27
2017-07-20T15:00:00Z
2018-07-20T14:00:54Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/15771
TID:201586886
url http://hdl.handle.net/10773/15771
identifier_str_mv TID:201586886
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Aveiro
publisher.none.fl_str_mv Universidade de Aveiro
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137560182652928