Stiffness behavior of soil stabilized with alkali-activated fly ash from small to large strains

Detalhes bibliográficos
Autor(a) principal: Sara Rios
Data de Publicação: 2017
Outros Autores: António Viana da Fonseca, Nuno Cristelo, Cristiana Ferreira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/85293
Resumo: : Alkaline activation of fly ash creates a geopolymeric cement that can replace ordinary portland cement in several applications such as soil improvement, with the advantage of much lower carbon dioxide emissions and reusing an industrial by-product otherwise landfilled, which averts several environmental problems. In this paper, the behavior of a silty sand improved by the alkaline activation of fly ash is analyzed from small to large strains by presenting uniaxial and drained triaxial compression test results and seismic wave velocities measured throughout the curing period. The dynamic, cyclic, and static tests showed a significant increase in stiffness with curing time, even beyond the 28-day curing period. On the basis of the nondestructive wave-propagation technique, the increase of the shear and compression wave velocities with time were drawn, giving the evolution of the elastic shear modulus and the Poisson ratio values. The dynamic Young modulus was compared to the correspondent secant Young modulus obtained from the mechanical tests. In addition, the evolution of the properties of this stabilized soil with curing time was compared and confronted to that of soil cement on the basis of the elastic stiffness of both materials, which showed that the most significant difference lies on the curing rate.
id RCAP_108fb662434f7c29f8e91d4342c50018
oai_identifier_str oai:repositorio-aberto.up.pt:10216/85293
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Stiffness behavior of soil stabilized with alkali-activated fly ash from small to large strains: Alkaline activation of fly ash creates a geopolymeric cement that can replace ordinary portland cement in several applications such as soil improvement, with the advantage of much lower carbon dioxide emissions and reusing an industrial by-product otherwise landfilled, which averts several environmental problems. In this paper, the behavior of a silty sand improved by the alkaline activation of fly ash is analyzed from small to large strains by presenting uniaxial and drained triaxial compression test results and seismic wave velocities measured throughout the curing period. The dynamic, cyclic, and static tests showed a significant increase in stiffness with curing time, even beyond the 28-day curing period. On the basis of the nondestructive wave-propagation technique, the increase of the shear and compression wave velocities with time were drawn, giving the evolution of the elastic shear modulus and the Poisson ratio values. The dynamic Young modulus was compared to the correspondent secant Young modulus obtained from the mechanical tests. In addition, the evolution of the properties of this stabilized soil with curing time was compared and confronted to that of soil cement on the basis of the elastic stiffness of both materials, which showed that the most significant difference lies on the curing rate.20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/85293eng1532-364110.1061/(ASCE)GM.1943-5622.0000783Sara RiosAntónio Viana da FonsecaNuno CristeloCristiana Ferreirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:09:07Zoai:repositorio-aberto.up.pt:10216/85293Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:16:52.147246Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Stiffness behavior of soil stabilized with alkali-activated fly ash from small to large strains
title Stiffness behavior of soil stabilized with alkali-activated fly ash from small to large strains
spellingShingle Stiffness behavior of soil stabilized with alkali-activated fly ash from small to large strains
Sara Rios
title_short Stiffness behavior of soil stabilized with alkali-activated fly ash from small to large strains
title_full Stiffness behavior of soil stabilized with alkali-activated fly ash from small to large strains
title_fullStr Stiffness behavior of soil stabilized with alkali-activated fly ash from small to large strains
title_full_unstemmed Stiffness behavior of soil stabilized with alkali-activated fly ash from small to large strains
title_sort Stiffness behavior of soil stabilized with alkali-activated fly ash from small to large strains
author Sara Rios
author_facet Sara Rios
António Viana da Fonseca
Nuno Cristelo
Cristiana Ferreira
author_role author
author2 António Viana da Fonseca
Nuno Cristelo
Cristiana Ferreira
author2_role author
author
author
dc.contributor.author.fl_str_mv Sara Rios
António Viana da Fonseca
Nuno Cristelo
Cristiana Ferreira
description : Alkaline activation of fly ash creates a geopolymeric cement that can replace ordinary portland cement in several applications such as soil improvement, with the advantage of much lower carbon dioxide emissions and reusing an industrial by-product otherwise landfilled, which averts several environmental problems. In this paper, the behavior of a silty sand improved by the alkaline activation of fly ash is analyzed from small to large strains by presenting uniaxial and drained triaxial compression test results and seismic wave velocities measured throughout the curing period. The dynamic, cyclic, and static tests showed a significant increase in stiffness with curing time, even beyond the 28-day curing period. On the basis of the nondestructive wave-propagation technique, the increase of the shear and compression wave velocities with time were drawn, giving the evolution of the elastic shear modulus and the Poisson ratio values. The dynamic Young modulus was compared to the correspondent secant Young modulus obtained from the mechanical tests. In addition, the evolution of the properties of this stabilized soil with curing time was compared and confronted to that of soil cement on the basis of the elastic stiffness of both materials, which showed that the most significant difference lies on the curing rate.
publishDate 2017
dc.date.none.fl_str_mv 2017
2017-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/85293
url https://hdl.handle.net/10216/85293
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1532-3641
10.1061/(ASCE)GM.1943-5622.0000783
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136088994873344