Design, assembly and test of a bioreactor for the electrical stimulation of neuronal cells

Detalhes bibliográficos
Autor(a) principal: Melo, Diogo Soares
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/147387
Resumo: Millions of people have suffered injury to their nervous system, which by its limited self- healing capacity, represents life-long complications, associated with loss of motor and sensory function. Though limited, this capacity is being extensively explored, and has been shown to increase through the use of electrical stimulation (ES). Therefore, this work was oriented towards the development of a setup for ES of neuronal cells, allowing the assessment of its potential in promoting neuronal regeneration. An ES chamber was designed using the CAD software Fusion 360TM and produced by machining of a poly(methyl methacrylate) (PMMA) block. A fixation system for con- ductive scaffolds was included, using stainless steel electrodes, which fits the description for a direct coupling method found in the literature. Connection to a power supply or a function generator is possible, allowing for delivery of both direct current (DC) and alternating current (AC) to cells. In a different design, electrical insulation of the media was attempted, defectively. The nature of this work supported the need for incorporating conductive polymers (CPs) in the scaffolds used for neuronal differentiation of cells in the stimulation chamber and so, poly(lactic acid) (PLA) aligned electruspun fibers were produced and coated with poly(3,4-ethylenedioxythiophene) (PEDOT) using vapor-phase polymerization (VPP). In this process, the polymerization takes place through the reaction of Iron(III) p-toluenesul– fonate/Fe(III)Tosylate (FeTos) included in the scaffolds with 3,4-ethylenedioxythiophene (EDOT) on vapor phase. This fibers did not exhibit cytotoxicity and electrical character- ization was attempted, using the bioreactor as a 2-point probe. Film casting using the same polymeric solutions failed, as an increase in the ratio of PLA to FeTos did not reduce film brittleness. In vitro assays were conducted both with and without stimulation. SH-SY5Y extended neurites after only 2 days of exposure to retinoic acid (RA). Cells maintained some level of differentiation and neurite directionality with time, when cultured in the produced fibers. Importantly, an electrical field of 500 mV/ cm was applied 1 h/day, for 9 days, without significant improvements on neuronal differentiation.
id RCAP_10a6e8718469645dcd71ff021eeb54f1
oai_identifier_str oai:run.unl.pt:10362/147387
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Design, assembly and test of a bioreactor for the electrical stimulation of neuronal cellsTissue engineeringNeuronal regenerationElectrical stimulationBioreactorSH-SY5Y cellsElectrospinnigDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasMillions of people have suffered injury to their nervous system, which by its limited self- healing capacity, represents life-long complications, associated with loss of motor and sensory function. Though limited, this capacity is being extensively explored, and has been shown to increase through the use of electrical stimulation (ES). Therefore, this work was oriented towards the development of a setup for ES of neuronal cells, allowing the assessment of its potential in promoting neuronal regeneration. An ES chamber was designed using the CAD software Fusion 360TM and produced by machining of a poly(methyl methacrylate) (PMMA) block. A fixation system for con- ductive scaffolds was included, using stainless steel electrodes, which fits the description for a direct coupling method found in the literature. Connection to a power supply or a function generator is possible, allowing for delivery of both direct current (DC) and alternating current (AC) to cells. In a different design, electrical insulation of the media was attempted, defectively. The nature of this work supported the need for incorporating conductive polymers (CPs) in the scaffolds used for neuronal differentiation of cells in the stimulation chamber and so, poly(lactic acid) (PLA) aligned electruspun fibers were produced and coated with poly(3,4-ethylenedioxythiophene) (PEDOT) using vapor-phase polymerization (VPP). In this process, the polymerization takes place through the reaction of Iron(III) p-toluenesul– fonate/Fe(III)Tosylate (FeTos) included in the scaffolds with 3,4-ethylenedioxythiophene (EDOT) on vapor phase. This fibers did not exhibit cytotoxicity and electrical character- ization was attempted, using the bioreactor as a 2-point probe. Film casting using the same polymeric solutions failed, as an increase in the ratio of PLA to FeTos did not reduce film brittleness. In vitro assays were conducted both with and without stimulation. SH-SY5Y extended neurites after only 2 days of exposure to retinoic acid (RA). Cells maintained some level of differentiation and neurite directionality with time, when cultured in the produced fibers. Importantly, an electrical field of 500 mV/ cm was applied 1 h/day, for 9 days, without significant improvements on neuronal differentiation.Milhões de pessoas já sofreram lesões no seu sistema nervoso, o que, dada a sua capaci- dade limitada de regeneração, origina complicações a longo prazo, associadas à perda de função motora e sensorial. Embora limitada, esta capacidade tem sido amplamente explo- rada, e já se provou poder ser melhorada, com recurso a estimulação elétrica. Assim, este trabalho focou-se no desenvolvimento de um sistema para estimulação elétrica de células neuronais, permitindo avaliar o seu potencial para promover regeneração neuronal. Desenhou-se um sistema para estimulação neuronal recorrendo ao software Fusion 360TM e fabricou-se o mesmo por maquinagem de um bloco de PMMA. A montagem inclui um sistema para fixação de scaffolds condutores, usando elétrodos de aço inoxidável, correspondendo a um sistema de acoplamento direto, segundo a literatura. É possível estabelecer contactos elétricos com uma fonte de tensão ou um gerador de funções, o que permite fornecer às células correntes diretas e alternadas. Houve uma tentativa, sem sucesso, para um novo design que permitisse isolamento elétrico do meio. A natureza deste trabalho justificou a incorporação de polímeros condutores nos scaffolds usados para diferenciação neuronal de células no sistema de estimulação desen- volvido. Assim, foram eletrofiadas fibras alinhadas de PLA e, mais tarde, revestidas por PEDOT recorrendo a VPP. Neste processo, a polimerização ocorreu pela reação do FeTos, incluído nos scaffolds, com EDOT em fase de vapor. Foram feitas tentativas de produção de filmes, usando as mesmas soluções poliméricas, contudo verificou-se que o aumento da razão PLA:FeTos não reduziu a sua fragilidade. Foram realizados testes in vitro com e sem estimulação. As células SH-SY5Y estende- ram neurites, com apenas dois dias de exposição a meio contendo ácido retinóico. Quando semeadas nas fibras produzidas, estas células mantiveram um nível moderado de diferen- ciação neuronal ao longo do tempo, alinhando as suas extensões na direção das fibras. É de salientar que a exposição das células a um campo de 500 mV/ cm aplicado 1 h/dia, por 9 dias, não resultou num aumento significativo de diferenciação neuronal.Silva, JorgeHenriques, CéliaRUNMelo, Diogo Soares2023-01-12T19:37:39Z2022-062022-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/147387enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:28:30Zoai:run.unl.pt:10362/147387Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:52:54.302049Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Design, assembly and test of a bioreactor for the electrical stimulation of neuronal cells
title Design, assembly and test of a bioreactor for the electrical stimulation of neuronal cells
spellingShingle Design, assembly and test of a bioreactor for the electrical stimulation of neuronal cells
Melo, Diogo Soares
Tissue engineering
Neuronal regeneration
Electrical stimulation
Bioreactor
SH-SY5Y cells
Electrospinnig
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
title_short Design, assembly and test of a bioreactor for the electrical stimulation of neuronal cells
title_full Design, assembly and test of a bioreactor for the electrical stimulation of neuronal cells
title_fullStr Design, assembly and test of a bioreactor for the electrical stimulation of neuronal cells
title_full_unstemmed Design, assembly and test of a bioreactor for the electrical stimulation of neuronal cells
title_sort Design, assembly and test of a bioreactor for the electrical stimulation of neuronal cells
author Melo, Diogo Soares
author_facet Melo, Diogo Soares
author_role author
dc.contributor.none.fl_str_mv Silva, Jorge
Henriques, Célia
RUN
dc.contributor.author.fl_str_mv Melo, Diogo Soares
dc.subject.por.fl_str_mv Tissue engineering
Neuronal regeneration
Electrical stimulation
Bioreactor
SH-SY5Y cells
Electrospinnig
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
topic Tissue engineering
Neuronal regeneration
Electrical stimulation
Bioreactor
SH-SY5Y cells
Electrospinnig
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
description Millions of people have suffered injury to their nervous system, which by its limited self- healing capacity, represents life-long complications, associated with loss of motor and sensory function. Though limited, this capacity is being extensively explored, and has been shown to increase through the use of electrical stimulation (ES). Therefore, this work was oriented towards the development of a setup for ES of neuronal cells, allowing the assessment of its potential in promoting neuronal regeneration. An ES chamber was designed using the CAD software Fusion 360TM and produced by machining of a poly(methyl methacrylate) (PMMA) block. A fixation system for con- ductive scaffolds was included, using stainless steel electrodes, which fits the description for a direct coupling method found in the literature. Connection to a power supply or a function generator is possible, allowing for delivery of both direct current (DC) and alternating current (AC) to cells. In a different design, electrical insulation of the media was attempted, defectively. The nature of this work supported the need for incorporating conductive polymers (CPs) in the scaffolds used for neuronal differentiation of cells in the stimulation chamber and so, poly(lactic acid) (PLA) aligned electruspun fibers were produced and coated with poly(3,4-ethylenedioxythiophene) (PEDOT) using vapor-phase polymerization (VPP). In this process, the polymerization takes place through the reaction of Iron(III) p-toluenesul– fonate/Fe(III)Tosylate (FeTos) included in the scaffolds with 3,4-ethylenedioxythiophene (EDOT) on vapor phase. This fibers did not exhibit cytotoxicity and electrical character- ization was attempted, using the bioreactor as a 2-point probe. Film casting using the same polymeric solutions failed, as an increase in the ratio of PLA to FeTos did not reduce film brittleness. In vitro assays were conducted both with and without stimulation. SH-SY5Y extended neurites after only 2 days of exposure to retinoic acid (RA). Cells maintained some level of differentiation and neurite directionality with time, when cultured in the produced fibers. Importantly, an electrical field of 500 mV/ cm was applied 1 h/day, for 9 days, without significant improvements on neuronal differentiation.
publishDate 2022
dc.date.none.fl_str_mv 2022-06
2022-06-01T00:00:00Z
2023-01-12T19:37:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/147387
url http://hdl.handle.net/10362/147387
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138120119091200