COVID-19: Worldwide profiles during the first 250 days
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/117162 |
Resumo: | António, N., Rita, P., & Saraiva, P. (2021). COVID-19: Worldwide profiles during the first 250 days. Applied Sciences (Switzerland), 11(8), 1-21. [3400]. https://doi.org/10.3390/app11083400 |
id |
RCAP_10cc7cee0a5254e346f1d25c2e7d30a4 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/117162 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
COVID-19: Worldwide profiles during the first 250 daysClusteringCOVID-19 pandemicData scienceMachine learningUnsupervised learningMaterials Science(all)InstrumentationEngineering(all)Process Chemistry and TechnologyComputer Science ApplicationsFluid Flow and Transfer ProcessesSDG 3 - Good Health and Well-beingAntónio, N., Rita, P., & Saraiva, P. (2021). COVID-19: Worldwide profiles during the first 250 days. Applied Sciences (Switzerland), 11(8), 1-21. [3400]. https://doi.org/10.3390/app11083400The present COVID-19 pandemic is happening in a strongly interconnected world. This interconnection explains why it became universal in such a short period of time and why it stimulated the creation of a large amount of relevant open data. In this paper, we use data science tools to explore this open data from the moment the pandemic began and across the first 250 days of prevalence before vaccination started. The use of unsupervised machine learning techniques allowed us to identify three clusters of countries and territories with similar profiles of standardized COVID-19 time dynamics. Although countries and territories in the three clusters share some characteristics, their composition is not homogenous. All these clusters contain countries from different geographies and with different development levels. The use of descriptive statistics and data visualization techniques enabled the description and understanding of where and how COVID-19 was impacting. Some interesting extracted features are discussed and suggestions for future research in this area are also presented.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNAntónio, NunoRita, PauloSaraiva, Pedro2021-05-05T23:28:19Z2021-04-102021-04-10T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article21application/pdfhttp://hdl.handle.net/10362/117162eng2076-3417PURE: 29572045https://doi.org/10.3390/app11083400info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:00:14Zoai:run.unl.pt:10362/117162Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:43:30.798618Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
COVID-19: Worldwide profiles during the first 250 days |
title |
COVID-19: Worldwide profiles during the first 250 days |
spellingShingle |
COVID-19: Worldwide profiles during the first 250 days António, Nuno Clustering COVID-19 pandemic Data science Machine learning Unsupervised learning Materials Science(all) Instrumentation Engineering(all) Process Chemistry and Technology Computer Science Applications Fluid Flow and Transfer Processes SDG 3 - Good Health and Well-being |
title_short |
COVID-19: Worldwide profiles during the first 250 days |
title_full |
COVID-19: Worldwide profiles during the first 250 days |
title_fullStr |
COVID-19: Worldwide profiles during the first 250 days |
title_full_unstemmed |
COVID-19: Worldwide profiles during the first 250 days |
title_sort |
COVID-19: Worldwide profiles during the first 250 days |
author |
António, Nuno |
author_facet |
António, Nuno Rita, Paulo Saraiva, Pedro |
author_role |
author |
author2 |
Rita, Paulo Saraiva, Pedro |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
António, Nuno Rita, Paulo Saraiva, Pedro |
dc.subject.por.fl_str_mv |
Clustering COVID-19 pandemic Data science Machine learning Unsupervised learning Materials Science(all) Instrumentation Engineering(all) Process Chemistry and Technology Computer Science Applications Fluid Flow and Transfer Processes SDG 3 - Good Health and Well-being |
topic |
Clustering COVID-19 pandemic Data science Machine learning Unsupervised learning Materials Science(all) Instrumentation Engineering(all) Process Chemistry and Technology Computer Science Applications Fluid Flow and Transfer Processes SDG 3 - Good Health and Well-being |
description |
António, N., Rita, P., & Saraiva, P. (2021). COVID-19: Worldwide profiles during the first 250 days. Applied Sciences (Switzerland), 11(8), 1-21. [3400]. https://doi.org/10.3390/app11083400 |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-05T23:28:19Z 2021-04-10 2021-04-10T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/117162 |
url |
http://hdl.handle.net/10362/117162 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2076-3417 PURE: 29572045 https://doi.org/10.3390/app11083400 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
21 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138044615327744 |