Hardy-type theorem for orthogonal functions with respect to their zeros. The Jacobi weight case
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/4587 https://doi.org/10.1016/j.jmaa.2007.10.050 |
Resumo: | Motivated by the G.H. Hardy's 1939 results [G.H. Hardy, Notes on special systems of orthogonal functions II: On functions orthogonal with respect to their own zeros, J. London Math. Soc. 14 (1939) 37-44] on functions orthogonal with respect to their real zeros [lambda]n, , we will consider, under the same general conditions imposed by Hardy, functions satisfying an orthogonality with respect to their zeros with Jacobi weights on the interval (0,1), that is, the functions f(z)=z[nu]F(z), , where F is entire and when n[not equal to]m. Considering all possible functions on this class we obtain a new family of generalized Bessel functions including Bessel and hyperbessel functions as special cases. |
id |
RCAP_10de6fe66644cca62527ad93aa8db58a |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/4587 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Hardy-type theorem for orthogonal functions with respect to their zeros. The Jacobi weight caseZeros of special functionsOrthogonalityJacobi weightsMellin transform on distributionsEntire functionsBessel functionsHyperbessel functionsMotivated by the G.H. Hardy's 1939 results [G.H. Hardy, Notes on special systems of orthogonal functions II: On functions orthogonal with respect to their own zeros, J. London Math. Soc. 14 (1939) 37-44] on functions orthogonal with respect to their real zeros [lambda]n, , we will consider, under the same general conditions imposed by Hardy, functions satisfying an orthogonality with respect to their zeros with Jacobi weights on the interval (0,1), that is, the functions f(z)=z[nu]F(z), , where F is entire and when n[not equal to]m. Considering all possible functions on this class we obtain a new family of generalized Bessel functions including Bessel and hyperbessel functions as special cases.http://www.sciencedirect.com/science/article/B6WK2-4R335P5-4/1/cc6374ea7f82755e02785787b349c20f2008info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4587http://hdl.handle.net/10316/4587https://doi.org/10.1016/j.jmaa.2007.10.050engJournal of Mathematical Analysis and Applications. 341:2 (2008) 803-812Abreu, L. D.Marcellán, F.Yakubovich, S. B.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-09-23T11:11:01Zoai:estudogeral.uc.pt:10316/4587Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:39.666Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Hardy-type theorem for orthogonal functions with respect to their zeros. The Jacobi weight case |
title |
Hardy-type theorem for orthogonal functions with respect to their zeros. The Jacobi weight case |
spellingShingle |
Hardy-type theorem for orthogonal functions with respect to their zeros. The Jacobi weight case Abreu, L. D. Zeros of special functions Orthogonality Jacobi weights Mellin transform on distributions Entire functions Bessel functions Hyperbessel functions |
title_short |
Hardy-type theorem for orthogonal functions with respect to their zeros. The Jacobi weight case |
title_full |
Hardy-type theorem for orthogonal functions with respect to their zeros. The Jacobi weight case |
title_fullStr |
Hardy-type theorem for orthogonal functions with respect to their zeros. The Jacobi weight case |
title_full_unstemmed |
Hardy-type theorem for orthogonal functions with respect to their zeros. The Jacobi weight case |
title_sort |
Hardy-type theorem for orthogonal functions with respect to their zeros. The Jacobi weight case |
author |
Abreu, L. D. |
author_facet |
Abreu, L. D. Marcellán, F. Yakubovich, S. B. |
author_role |
author |
author2 |
Marcellán, F. Yakubovich, S. B. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Abreu, L. D. Marcellán, F. Yakubovich, S. B. |
dc.subject.por.fl_str_mv |
Zeros of special functions Orthogonality Jacobi weights Mellin transform on distributions Entire functions Bessel functions Hyperbessel functions |
topic |
Zeros of special functions Orthogonality Jacobi weights Mellin transform on distributions Entire functions Bessel functions Hyperbessel functions |
description |
Motivated by the G.H. Hardy's 1939 results [G.H. Hardy, Notes on special systems of orthogonal functions II: On functions orthogonal with respect to their own zeros, J. London Math. Soc. 14 (1939) 37-44] on functions orthogonal with respect to their real zeros [lambda]n, , we will consider, under the same general conditions imposed by Hardy, functions satisfying an orthogonality with respect to their zeros with Jacobi weights on the interval (0,1), that is, the functions f(z)=z[nu]F(z), , where F is entire and when n[not equal to]m. Considering all possible functions on this class we obtain a new family of generalized Bessel functions including Bessel and hyperbessel functions as special cases. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/4587 http://hdl.handle.net/10316/4587 https://doi.org/10.1016/j.jmaa.2007.10.050 |
url |
http://hdl.handle.net/10316/4587 https://doi.org/10.1016/j.jmaa.2007.10.050 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Mathematical Analysis and Applications. 341:2 (2008) 803-812 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
aplication/PDF |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133897087254528 |