Perinatal tissues and cells in tissue engineering and regenerative medicine

Detalhes bibliográficos
Autor(a) principal: Deus, Inês A.
Data de Publicação: 2020
Outros Autores: Mano, João F., Custódio, Catarina A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/34431
Resumo: Perinatal tissues are an abundant source of human extracellular matrix proteins, growth factors and stem cells with proved potential use in a wide range of therapeutic applications. Due to their placental origin, these tissues possess unique biological properties, including being angiogenic, anti-inflammatory, anti-fibrotic, anti-microbial and immune privileged. Additionally, as a temporary organ, placenta is usually discarded as a medical waste, thus providing an easily available, cost effective, 'unlimited' and ethical source of raw materials. Although some of these tissues, such as the amniotic membrane and umbilical cord, have been used in clinical practices, most of them continue to be highly under explored. This review aims to outline the most relevant applications of perinatal tissues as a source of biomaterials and stem cells in the exciting fields of tissue engineering and regenerative medicine (TERM), as well as highlight how these solutions can be used to overcome the shortage of adequate scaffolds and cell sources that currently hampers the translation of TERM strategies towards clinical settings. STATEMENT OF SIGNIFICANCE: Stem cells and extracellular matrix derived from perinatal tissues such as placenta and umbilical cord, have drawn great attention for use in a wide variety of applications in the biomedical field. Due to their origin, these tissues possess unique biological properties, including being angiogenic, anti-inflammatory, anti-fibrotic, anti-microbial and immune privileged. Also they are typically considered medical waste, thus providing an easily available, cost effective, 'unlimited' and ethical source of raw materials. This work aims to present and discuss the most relevant applications of perinatal tissues as a source of biomaterials and stem cells in the exciting fields of tissue engineering and regenerative medicine (TERM).
id RCAP_1101ccd1658bb87ae9f2c2f79a5b5805
oai_identifier_str oai:ria.ua.pt:10773/34431
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Perinatal tissues and cells in tissue engineering and regenerative medicinePerinatal tissuesStem cellsECMAmniotic membraneUmbilical cordTissue engineeringPerinatal tissues are an abundant source of human extracellular matrix proteins, growth factors and stem cells with proved potential use in a wide range of therapeutic applications. Due to their placental origin, these tissues possess unique biological properties, including being angiogenic, anti-inflammatory, anti-fibrotic, anti-microbial and immune privileged. Additionally, as a temporary organ, placenta is usually discarded as a medical waste, thus providing an easily available, cost effective, 'unlimited' and ethical source of raw materials. Although some of these tissues, such as the amniotic membrane and umbilical cord, have been used in clinical practices, most of them continue to be highly under explored. This review aims to outline the most relevant applications of perinatal tissues as a source of biomaterials and stem cells in the exciting fields of tissue engineering and regenerative medicine (TERM), as well as highlight how these solutions can be used to overcome the shortage of adequate scaffolds and cell sources that currently hampers the translation of TERM strategies towards clinical settings. STATEMENT OF SIGNIFICANCE: Stem cells and extracellular matrix derived from perinatal tissues such as placenta and umbilical cord, have drawn great attention for use in a wide variety of applications in the biomedical field. Due to their origin, these tissues possess unique biological properties, including being angiogenic, anti-inflammatory, anti-fibrotic, anti-microbial and immune privileged. Also they are typically considered medical waste, thus providing an easily available, cost effective, 'unlimited' and ethical source of raw materials. This work aims to present and discuss the most relevant applications of perinatal tissues as a source of biomaterials and stem cells in the exciting fields of tissue engineering and regenerative medicine (TERM).Elsevier2022-08-10T18:47:38Z2020-07-01T00:00:00Z2020-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/34431eng1742-706110.1016/j.actbio.2020.04.035Deus, Inês A.Mano, João F.Custódio, Catarina A.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:06:31Zoai:ria.ua.pt:10773/34431Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:05:46.010447Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Perinatal tissues and cells in tissue engineering and regenerative medicine
title Perinatal tissues and cells in tissue engineering and regenerative medicine
spellingShingle Perinatal tissues and cells in tissue engineering and regenerative medicine
Deus, Inês A.
Perinatal tissues
Stem cells
ECM
Amniotic membrane
Umbilical cord
Tissue engineering
title_short Perinatal tissues and cells in tissue engineering and regenerative medicine
title_full Perinatal tissues and cells in tissue engineering and regenerative medicine
title_fullStr Perinatal tissues and cells in tissue engineering and regenerative medicine
title_full_unstemmed Perinatal tissues and cells in tissue engineering and regenerative medicine
title_sort Perinatal tissues and cells in tissue engineering and regenerative medicine
author Deus, Inês A.
author_facet Deus, Inês A.
Mano, João F.
Custódio, Catarina A.
author_role author
author2 Mano, João F.
Custódio, Catarina A.
author2_role author
author
dc.contributor.author.fl_str_mv Deus, Inês A.
Mano, João F.
Custódio, Catarina A.
dc.subject.por.fl_str_mv Perinatal tissues
Stem cells
ECM
Amniotic membrane
Umbilical cord
Tissue engineering
topic Perinatal tissues
Stem cells
ECM
Amniotic membrane
Umbilical cord
Tissue engineering
description Perinatal tissues are an abundant source of human extracellular matrix proteins, growth factors and stem cells with proved potential use in a wide range of therapeutic applications. Due to their placental origin, these tissues possess unique biological properties, including being angiogenic, anti-inflammatory, anti-fibrotic, anti-microbial and immune privileged. Additionally, as a temporary organ, placenta is usually discarded as a medical waste, thus providing an easily available, cost effective, 'unlimited' and ethical source of raw materials. Although some of these tissues, such as the amniotic membrane and umbilical cord, have been used in clinical practices, most of them continue to be highly under explored. This review aims to outline the most relevant applications of perinatal tissues as a source of biomaterials and stem cells in the exciting fields of tissue engineering and regenerative medicine (TERM), as well as highlight how these solutions can be used to overcome the shortage of adequate scaffolds and cell sources that currently hampers the translation of TERM strategies towards clinical settings. STATEMENT OF SIGNIFICANCE: Stem cells and extracellular matrix derived from perinatal tissues such as placenta and umbilical cord, have drawn great attention for use in a wide variety of applications in the biomedical field. Due to their origin, these tissues possess unique biological properties, including being angiogenic, anti-inflammatory, anti-fibrotic, anti-microbial and immune privileged. Also they are typically considered medical waste, thus providing an easily available, cost effective, 'unlimited' and ethical source of raw materials. This work aims to present and discuss the most relevant applications of perinatal tissues as a source of biomaterials and stem cells in the exciting fields of tissue engineering and regenerative medicine (TERM).
publishDate 2020
dc.date.none.fl_str_mv 2020-07-01T00:00:00Z
2020-07-01
2022-08-10T18:47:38Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/34431
url http://hdl.handle.net/10773/34431
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1742-7061
10.1016/j.actbio.2020.04.035
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137712591077376