On the stability of a class of splitting methods for integro-differential equations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
DOI: | 10.1016/j.apnum.2008.03.005 |
Texto Completo: | http://hdl.handle.net/10316/4593 https://doi.org/10.1016/j.apnum.2008.03.005 |
Resumo: | The classical convection-diffusion-reaction equation has the unphysical property that if a sudden change in the dependent variable is made at any point, it will be felt instantly everywhere. This phenomena violate the principle of causality. Over the years, several authors have proposed modifications in an effort to overcome the propagation speed defect. The purpose of this paper is to study, from analytical and numerical point of view a modification to the classical model that take into account the memory effects. Besides the finite speed of propagation, we establish an energy estimate to the exact solution. We also present a numerical method which has the same qualitative property of the exact solution. Finally we illustrate the theoretical results with some numerical simulations. |
id |
RCAP_114b106ad0a6efdf9a4caf4077ce50e0 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/4593 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the stability of a class of splitting methods for integro-differential equationsIntegro-differential equationsSplitting methodsStabilityConvergenceThe classical convection-diffusion-reaction equation has the unphysical property that if a sudden change in the dependent variable is made at any point, it will be felt instantly everywhere. This phenomena violate the principle of causality. Over the years, several authors have proposed modifications in an effort to overcome the propagation speed defect. The purpose of this paper is to study, from analytical and numerical point of view a modification to the classical model that take into account the memory effects. Besides the finite speed of propagation, we establish an energy estimate to the exact solution. We also present a numerical method which has the same qualitative property of the exact solution. Finally we illustrate the theoretical results with some numerical simulations.http://www.sciencedirect.com/science/article/B6TYD-4S3G3SF-1/1/62545cd460b5e040aa2f285075df6b902008-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4593http://hdl.handle.net/10316/4593https://doi.org/10.1016/j.apnum.2008.03.005engApplied Numerical Mathematics. In Press, Corrected Proof:Araújo, A.Branco, J. R.Ferreira, J. A.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T16:48:46Zoai:estudogeral.uc.pt:10316/4593Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:45.345777Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the stability of a class of splitting methods for integro-differential equations |
title |
On the stability of a class of splitting methods for integro-differential equations |
spellingShingle |
On the stability of a class of splitting methods for integro-differential equations On the stability of a class of splitting methods for integro-differential equations Araújo, A. Integro-differential equations Splitting methods Stability Convergence Araújo, A. Integro-differential equations Splitting methods Stability Convergence |
title_short |
On the stability of a class of splitting methods for integro-differential equations |
title_full |
On the stability of a class of splitting methods for integro-differential equations |
title_fullStr |
On the stability of a class of splitting methods for integro-differential equations On the stability of a class of splitting methods for integro-differential equations |
title_full_unstemmed |
On the stability of a class of splitting methods for integro-differential equations On the stability of a class of splitting methods for integro-differential equations |
title_sort |
On the stability of a class of splitting methods for integro-differential equations |
author |
Araújo, A. |
author_facet |
Araújo, A. Araújo, A. Branco, J. R. Ferreira, J. A. Branco, J. R. Ferreira, J. A. |
author_role |
author |
author2 |
Branco, J. R. Ferreira, J. A. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Araújo, A. Branco, J. R. Ferreira, J. A. |
dc.subject.por.fl_str_mv |
Integro-differential equations Splitting methods Stability Convergence |
topic |
Integro-differential equations Splitting methods Stability Convergence |
description |
The classical convection-diffusion-reaction equation has the unphysical property that if a sudden change in the dependent variable is made at any point, it will be felt instantly everywhere. This phenomena violate the principle of causality. Over the years, several authors have proposed modifications in an effort to overcome the propagation speed defect. The purpose of this paper is to study, from analytical and numerical point of view a modification to the classical model that take into account the memory effects. Besides the finite speed of propagation, we establish an energy estimate to the exact solution. We also present a numerical method which has the same qualitative property of the exact solution. Finally we illustrate the theoretical results with some numerical simulations. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-09-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/4593 http://hdl.handle.net/10316/4593 https://doi.org/10.1016/j.apnum.2008.03.005 |
url |
http://hdl.handle.net/10316/4593 https://doi.org/10.1016/j.apnum.2008.03.005 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Applied Numerical Mathematics. In Press, Corrected Proof: |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
aplication/PDF |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1822239017819701248 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.apnum.2008.03.005 |