Stratifications on the moduli space of Higgs bundles
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/108812 |
Resumo: | The moduli space of Higgs bundles has two stratifications. The Bialynicki-Birula stratification comes from the action of the non-zero complex numbers by multiplication on the Higgs field, and the Shatz stratification arises from the Harder-Narasimhan type of the vector bundle underlying a Higgs bundle. While these two stratifications coincide in the case of rank two Higgs bundles, this is not the case in higher rank. In this paper we analyze the relation between the two stratifications for the moduli space of rank three Higgs bundles. |
id |
RCAP_114f7b35cc4ce8aeec84dc7d3425d9b1 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/108812 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Stratifications on the moduli space of Higgs bundlesGeometria, MatemáticaGeometry, MathematicsThe moduli space of Higgs bundles has two stratifications. The Bialynicki-Birula stratification comes from the action of the non-zero complex numbers by multiplication on the Higgs field, and the Shatz stratification arises from the Harder-Narasimhan type of the vector bundle underlying a Higgs bundle. While these two stratifications coincide in the case of rank two Higgs bundles, this is not the case in higher rank. In this paper we analyze the relation between the two stratifications for the moduli space of rank three Higgs bundles.2017-11-102017-11-10T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/108812eng0032-515510.4171/pm/1996Gothen, PBZúñiga-Rojas, Ronald A.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T12:54:03Zoai:repositorio-aberto.up.pt:10216/108812Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:29:00.304969Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Stratifications on the moduli space of Higgs bundles |
title |
Stratifications on the moduli space of Higgs bundles |
spellingShingle |
Stratifications on the moduli space of Higgs bundles Gothen, PB Geometria, Matemática Geometry, Mathematics |
title_short |
Stratifications on the moduli space of Higgs bundles |
title_full |
Stratifications on the moduli space of Higgs bundles |
title_fullStr |
Stratifications on the moduli space of Higgs bundles |
title_full_unstemmed |
Stratifications on the moduli space of Higgs bundles |
title_sort |
Stratifications on the moduli space of Higgs bundles |
author |
Gothen, PB |
author_facet |
Gothen, PB Zúñiga-Rojas, Ronald A. |
author_role |
author |
author2 |
Zúñiga-Rojas, Ronald A. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Gothen, PB Zúñiga-Rojas, Ronald A. |
dc.subject.por.fl_str_mv |
Geometria, Matemática Geometry, Mathematics |
topic |
Geometria, Matemática Geometry, Mathematics |
description |
The moduli space of Higgs bundles has two stratifications. The Bialynicki-Birula stratification comes from the action of the non-zero complex numbers by multiplication on the Higgs field, and the Shatz stratification arises from the Harder-Narasimhan type of the vector bundle underlying a Higgs bundle. While these two stratifications coincide in the case of rank two Higgs bundles, this is not the case in higher rank. In this paper we analyze the relation between the two stratifications for the moduli space of rank three Higgs bundles. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11-10 2017-11-10T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/108812 |
url |
https://hdl.handle.net/10216/108812 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0032-5155 10.4171/pm/1996 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135597697171457 |