Deep Learning in Automated Tests for the Automotive Industry
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/23878 |
Resumo: | Artificial Intelligence (AI) usage has increased over the years, whether in speech recognition, predictive analytics and mainly image recognition, being useful for industries such as the medical industry, for medical diagnosis, the automotive industry, for autonomous driving, traffic signals detection and also for an advanced driver assistance systems that can help prevent accidents. The automotive industry is one of the most popular industries in our society, either by the convenience that it gives to people on their travels, the designs of the vehicles themselves and nowadays, mostly the technology that it offers. And, with this increase in technology the rise of technical failures also occurs, which makes one step of the production of any kind of vehicle more important than ever, testing, which caused the companies to start investing in automated tests in order to decrease both their costs in a long term and human effort. There are a lot of techniques when it comes to automated testing, but with the increase in the popularity of Deep Learning (DL) and Machine Learning (ML), automated software testing using this branch of AI has started to gain popularity as well. Therefore, the project documented in this report has the goal of using a DL network that can help to perform automated software tests in Android Automotive infotainment together with Python and its dedicated frameworks, which can then increase the quality of testing but also decrease the human effort. Besides this, reports with the results of the executions and the suggestion of tests’ names based on the network output will be implemented. |
id |
RCAP_120ff5fe8be325a2b5aacdf3c3767e3e |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/23878 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Deep Learning in Automated Tests for the Automotive IndustryDeep Learning em Testes Automatizados para a Indústria AutomóvelArtificial IntelligenceMachine LearningDeep LearningAutomotive SectorAutomated Software TestingAndroid AutomotivePythonInteligência ArtificialSetor AutomóvelTestes de Software AutomatizadosArtificial Intelligence (AI) usage has increased over the years, whether in speech recognition, predictive analytics and mainly image recognition, being useful for industries such as the medical industry, for medical diagnosis, the automotive industry, for autonomous driving, traffic signals detection and also for an advanced driver assistance systems that can help prevent accidents. The automotive industry is one of the most popular industries in our society, either by the convenience that it gives to people on their travels, the designs of the vehicles themselves and nowadays, mostly the technology that it offers. And, with this increase in technology the rise of technical failures also occurs, which makes one step of the production of any kind of vehicle more important than ever, testing, which caused the companies to start investing in automated tests in order to decrease both their costs in a long term and human effort. There are a lot of techniques when it comes to automated testing, but with the increase in the popularity of Deep Learning (DL) and Machine Learning (ML), automated software testing using this branch of AI has started to gain popularity as well. Therefore, the project documented in this report has the goal of using a DL network that can help to perform automated software tests in Android Automotive infotainment together with Python and its dedicated frameworks, which can then increase the quality of testing but also decrease the human effort. Besides this, reports with the results of the executions and the suggestion of tests’ names based on the network output will be implemented.O uso de Inteligência Artificial (IA) tem vindo a aumentar ao longo dos anos, quer seja no reconhecimento de voz, análise preditiva e principalmente, no reconhecimento de imagens, sendo este último útil em indústrias tais como a médica, para diagnósticos e também a automóvel, para a condução autónoma, deteção de sinais de trânsito e também para sistemas de assistência em viagem que pode prevenir acidentes. A indústria automóvel é uma das mais populares na nossa sociedade, quer pela conveniência que oferece às pessoas nas suas viagens, pelo design dos próprios veículos e atualmente, principalmente pela tecnologia que oferece. Assim, com o aumento da tecnologia o crescimento de falhas técnicas também acontece, o que faz com que um passo da produção, a testagem, seja mais importante do que nunca, o que fez com que as empresas começassem a investir em testes automatizados de forma a diminuir tanto os custos a longo prazo, mas também o esforço humano. Existem bastantes técnicas quando se trata da automatização de testes, no entanto, com o aumento da popularidade de Deep Learning (DL) e Machine Learning (ML), os testes de software automatizados utilizando este ramo da inteligência artificial também começaram a ganhar popularidade. Dessa forma, o projeto documentado no presente relatório tem como objetivo o uso de uma rede de DL que, juntamente com a utilização de Python e respetivas frameworks, seja capaz de auxiliar à execução de testes de software automatizados num infotainment Android Automotive, podendo levar assim à melhoria da qualidade dos testes executados e diminuição do esforço humano. Para além disso, relatórios com os resultados das execuções e a sugestão de nomes de testes baseada no resultado da rede irão ser implementados.Barbosa, Ramiro de SousaRepositório Científico do Instituto Politécnico do PortoBranco, Beatriz Cunha20232025-09-21T00:00:00Z2023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/23878TID:203380312enginfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-15T01:47:51Zoai:recipp.ipp.pt:10400.22/23878Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:42:34.116589Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Deep Learning in Automated Tests for the Automotive Industry Deep Learning em Testes Automatizados para a Indústria Automóvel |
title |
Deep Learning in Automated Tests for the Automotive Industry |
spellingShingle |
Deep Learning in Automated Tests for the Automotive Industry Branco, Beatriz Cunha Artificial Intelligence Machine Learning Deep Learning Automotive Sector Automated Software Testing Android Automotive Python Inteligência Artificial Setor Automóvel Testes de Software Automatizados |
title_short |
Deep Learning in Automated Tests for the Automotive Industry |
title_full |
Deep Learning in Automated Tests for the Automotive Industry |
title_fullStr |
Deep Learning in Automated Tests for the Automotive Industry |
title_full_unstemmed |
Deep Learning in Automated Tests for the Automotive Industry |
title_sort |
Deep Learning in Automated Tests for the Automotive Industry |
author |
Branco, Beatriz Cunha |
author_facet |
Branco, Beatriz Cunha |
author_role |
author |
dc.contributor.none.fl_str_mv |
Barbosa, Ramiro de Sousa Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Branco, Beatriz Cunha |
dc.subject.por.fl_str_mv |
Artificial Intelligence Machine Learning Deep Learning Automotive Sector Automated Software Testing Android Automotive Python Inteligência Artificial Setor Automóvel Testes de Software Automatizados |
topic |
Artificial Intelligence Machine Learning Deep Learning Automotive Sector Automated Software Testing Android Automotive Python Inteligência Artificial Setor Automóvel Testes de Software Automatizados |
description |
Artificial Intelligence (AI) usage has increased over the years, whether in speech recognition, predictive analytics and mainly image recognition, being useful for industries such as the medical industry, for medical diagnosis, the automotive industry, for autonomous driving, traffic signals detection and also for an advanced driver assistance systems that can help prevent accidents. The automotive industry is one of the most popular industries in our society, either by the convenience that it gives to people on their travels, the designs of the vehicles themselves and nowadays, mostly the technology that it offers. And, with this increase in technology the rise of technical failures also occurs, which makes one step of the production of any kind of vehicle more important than ever, testing, which caused the companies to start investing in automated tests in order to decrease both their costs in a long term and human effort. There are a lot of techniques when it comes to automated testing, but with the increase in the popularity of Deep Learning (DL) and Machine Learning (ML), automated software testing using this branch of AI has started to gain popularity as well. Therefore, the project documented in this report has the goal of using a DL network that can help to perform automated software tests in Android Automotive infotainment together with Python and its dedicated frameworks, which can then increase the quality of testing but also decrease the human effort. Besides this, reports with the results of the executions and the suggestion of tests’ names based on the network output will be implemented. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 2023-01-01T00:00:00Z 2025-09-21T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/23878 TID:203380312 |
url |
http://hdl.handle.net/10400.22/23878 |
identifier_str_mv |
TID:203380312 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1817552503347085312 |