Deep Learning in Automated Tests for the Automotive Industry

Detalhes bibliográficos
Autor(a) principal: Branco, Beatriz Cunha
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/23878
Resumo: Artificial Intelligence (AI) usage has increased over the years, whether in speech recognition, predictive analytics and mainly image recognition, being useful for industries such as the medical industry, for medical diagnosis, the automotive industry, for autonomous driving, traffic signals detection and also for an advanced driver assistance systems that can help prevent accidents. The automotive industry is one of the most popular industries in our society, either by the convenience that it gives to people on their travels, the designs of the vehicles themselves and nowadays, mostly the technology that it offers. And, with this increase in technology the rise of technical failures also occurs, which makes one step of the production of any kind of vehicle more important than ever, testing, which caused the companies to start investing in automated tests in order to decrease both their costs in a long term and human effort. There are a lot of techniques when it comes to automated testing, but with the increase in the popularity of Deep Learning (DL) and Machine Learning (ML), automated software testing using this branch of AI has started to gain popularity as well. Therefore, the project documented in this report has the goal of using a DL network that can help to perform automated software tests in Android Automotive infotainment together with Python and its dedicated frameworks, which can then increase the quality of testing but also decrease the human effort. Besides this, reports with the results of the executions and the suggestion of tests’ names based on the network output will be implemented.
id RCAP_120ff5fe8be325a2b5aacdf3c3767e3e
oai_identifier_str oai:recipp.ipp.pt:10400.22/23878
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Deep Learning in Automated Tests for the Automotive IndustryDeep Learning em Testes Automatizados para a Indústria AutomóvelArtificial IntelligenceMachine LearningDeep LearningAutomotive SectorAutomated Software TestingAndroid AutomotivePythonInteligência ArtificialSetor AutomóvelTestes de Software AutomatizadosArtificial Intelligence (AI) usage has increased over the years, whether in speech recognition, predictive analytics and mainly image recognition, being useful for industries such as the medical industry, for medical diagnosis, the automotive industry, for autonomous driving, traffic signals detection and also for an advanced driver assistance systems that can help prevent accidents. The automotive industry is one of the most popular industries in our society, either by the convenience that it gives to people on their travels, the designs of the vehicles themselves and nowadays, mostly the technology that it offers. And, with this increase in technology the rise of technical failures also occurs, which makes one step of the production of any kind of vehicle more important than ever, testing, which caused the companies to start investing in automated tests in order to decrease both their costs in a long term and human effort. There are a lot of techniques when it comes to automated testing, but with the increase in the popularity of Deep Learning (DL) and Machine Learning (ML), automated software testing using this branch of AI has started to gain popularity as well. Therefore, the project documented in this report has the goal of using a DL network that can help to perform automated software tests in Android Automotive infotainment together with Python and its dedicated frameworks, which can then increase the quality of testing but also decrease the human effort. Besides this, reports with the results of the executions and the suggestion of tests’ names based on the network output will be implemented.O uso de Inteligência Artificial (IA) tem vindo a aumentar ao longo dos anos, quer seja no reconhecimento de voz, análise preditiva e principalmente, no reconhecimento de imagens, sendo este último útil em indústrias tais como a médica, para diagnósticos e também a automóvel, para a condução autónoma, deteção de sinais de trânsito e também para sistemas de assistência em viagem que pode prevenir acidentes. A indústria automóvel é uma das mais populares na nossa sociedade, quer pela conveniência que oferece às pessoas nas suas viagens, pelo design dos próprios veículos e atualmente, principalmente pela tecnologia que oferece. Assim, com o aumento da tecnologia o crescimento de falhas técnicas também acontece, o que faz com que um passo da produção, a testagem, seja mais importante do que nunca, o que fez com que as empresas começassem a investir em testes automatizados de forma a diminuir tanto os custos a longo prazo, mas também o esforço humano. Existem bastantes técnicas quando se trata da automatização de testes, no entanto, com o aumento da popularidade de Deep Learning (DL) e Machine Learning (ML), os testes de software automatizados utilizando este ramo da inteligência artificial também começaram a ganhar popularidade. Dessa forma, o projeto documentado no presente relatório tem como objetivo o uso de uma rede de DL que, juntamente com a utilização de Python e respetivas frameworks, seja capaz de auxiliar à execução de testes de software automatizados num infotainment Android Automotive, podendo levar assim à melhoria da qualidade dos testes executados e diminuição do esforço humano. Para além disso, relatórios com os resultados das execuções e a sugestão de nomes de testes baseada no resultado da rede irão ser implementados.Barbosa, Ramiro de SousaRepositório Científico do Instituto Politécnico do PortoBranco, Beatriz Cunha20232025-09-21T00:00:00Z2023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/23878TID:203380312enginfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-15T01:47:51Zoai:recipp.ipp.pt:10400.22/23878Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:42:34.116589Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Deep Learning in Automated Tests for the Automotive Industry
Deep Learning em Testes Automatizados para a Indústria Automóvel
title Deep Learning in Automated Tests for the Automotive Industry
spellingShingle Deep Learning in Automated Tests for the Automotive Industry
Branco, Beatriz Cunha
Artificial Intelligence
Machine Learning
Deep Learning
Automotive Sector
Automated Software Testing
Android Automotive
Python
Inteligência Artificial
Setor Automóvel
Testes de Software Automatizados
title_short Deep Learning in Automated Tests for the Automotive Industry
title_full Deep Learning in Automated Tests for the Automotive Industry
title_fullStr Deep Learning in Automated Tests for the Automotive Industry
title_full_unstemmed Deep Learning in Automated Tests for the Automotive Industry
title_sort Deep Learning in Automated Tests for the Automotive Industry
author Branco, Beatriz Cunha
author_facet Branco, Beatriz Cunha
author_role author
dc.contributor.none.fl_str_mv Barbosa, Ramiro de Sousa
Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Branco, Beatriz Cunha
dc.subject.por.fl_str_mv Artificial Intelligence
Machine Learning
Deep Learning
Automotive Sector
Automated Software Testing
Android Automotive
Python
Inteligência Artificial
Setor Automóvel
Testes de Software Automatizados
topic Artificial Intelligence
Machine Learning
Deep Learning
Automotive Sector
Automated Software Testing
Android Automotive
Python
Inteligência Artificial
Setor Automóvel
Testes de Software Automatizados
description Artificial Intelligence (AI) usage has increased over the years, whether in speech recognition, predictive analytics and mainly image recognition, being useful for industries such as the medical industry, for medical diagnosis, the automotive industry, for autonomous driving, traffic signals detection and also for an advanced driver assistance systems that can help prevent accidents. The automotive industry is one of the most popular industries in our society, either by the convenience that it gives to people on their travels, the designs of the vehicles themselves and nowadays, mostly the technology that it offers. And, with this increase in technology the rise of technical failures also occurs, which makes one step of the production of any kind of vehicle more important than ever, testing, which caused the companies to start investing in automated tests in order to decrease both their costs in a long term and human effort. There are a lot of techniques when it comes to automated testing, but with the increase in the popularity of Deep Learning (DL) and Machine Learning (ML), automated software testing using this branch of AI has started to gain popularity as well. Therefore, the project documented in this report has the goal of using a DL network that can help to perform automated software tests in Android Automotive infotainment together with Python and its dedicated frameworks, which can then increase the quality of testing but also decrease the human effort. Besides this, reports with the results of the executions and the suggestion of tests’ names based on the network output will be implemented.
publishDate 2023
dc.date.none.fl_str_mv 2023
2023-01-01T00:00:00Z
2025-09-21T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/23878
TID:203380312
url http://hdl.handle.net/10400.22/23878
identifier_str_mv TID:203380312
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1817552503347085312