Production of activated carbons by microwave pyrolysis of industrial wastes for the removal of pharmaceuticals from water

Detalhes bibliográficos
Autor(a) principal: Dias, Sandra Raquel da Silva
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/24698
Resumo: The presence of pharmaceuticals in water bodies, being biologically active compounds, have raised concerns due to the adverse effects in non-target organisms. With the conventional treatments, applied in the wastewater treatment plants (WWTPs), being inefficient for the removal of these contaminants, WWTPs are pointed out as the main source of pharmaceuticals into the environment. The use of adsorption, as an advanced treatment for the removal of pharmaceuticals from water, in particular by using activated carbons (ACs), has shown to be an easy-handling and cost-efficient process, without sub-products formation. Since the production of ACs can be an expensive process, due to the high energy requirements and the use of expensive precursors, the alternative microwave (MW) pyrolysis of paper mill primary sludge (PS) can be a promising solution, contributing simultaneously for industrial waste valorisation. In the scope of this work, ACs were produced by MW pyrolysis of PS impregnated in KOH (activating agent) for 10 min at 800 W, washed with hydrochloric acid and sieved to obtain the fraction of particles with a size up to 180 μm. Different ACs were obtained by changing activating agent:precursor ratios, namely 0.5:1, 1:1 and 1.5:1. The produced ACs were physico-chemically characterised. In order to assess the performance of the produced ACs, batch adsorption experiments were performed with ultra-pure water to determine the adsorption percentages of the anti-epileptic carbamazepine (CBZ). The effect of AC dosage and the effect of contact time were also tested. The obtained results have shown that, overall, the ACs produced with an activating agent:precursor ratio of 0.5:1 presented specific surface areas (SBET) between 773 and 1190 m2/g and high percentages of CBZ removed from ultra-pure water solutions, above 80 %, for AC dosages of 0.1 g/L and a contact time of 24 h. The lab-made ACs have shown a more developed porous structure than the reference commercial AC and comparable SBET. Nevertheless, under the same experimental conditions, different production batches resulted in ACs with different properties and performances, highlighting that further research work is required to optimise its production process, making it repeatable.
id RCAP_125cbecc4d01466a01aa2c0c99ef1b68
oai_identifier_str oai:ria.ua.pt:10773/24698
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Production of activated carbons by microwave pyrolysis of industrial wastes for the removal of pharmaceuticals from waterAdsorptionActivated CarbonsChemical activationMicrowave pyrolysisPharmaceuticalsEnvironmentWater treatmentWaste valorisation.The presence of pharmaceuticals in water bodies, being biologically active compounds, have raised concerns due to the adverse effects in non-target organisms. With the conventional treatments, applied in the wastewater treatment plants (WWTPs), being inefficient for the removal of these contaminants, WWTPs are pointed out as the main source of pharmaceuticals into the environment. The use of adsorption, as an advanced treatment for the removal of pharmaceuticals from water, in particular by using activated carbons (ACs), has shown to be an easy-handling and cost-efficient process, without sub-products formation. Since the production of ACs can be an expensive process, due to the high energy requirements and the use of expensive precursors, the alternative microwave (MW) pyrolysis of paper mill primary sludge (PS) can be a promising solution, contributing simultaneously for industrial waste valorisation. In the scope of this work, ACs were produced by MW pyrolysis of PS impregnated in KOH (activating agent) for 10 min at 800 W, washed with hydrochloric acid and sieved to obtain the fraction of particles with a size up to 180 μm. Different ACs were obtained by changing activating agent:precursor ratios, namely 0.5:1, 1:1 and 1.5:1. The produced ACs were physico-chemically characterised. In order to assess the performance of the produced ACs, batch adsorption experiments were performed with ultra-pure water to determine the adsorption percentages of the anti-epileptic carbamazepine (CBZ). The effect of AC dosage and the effect of contact time were also tested. The obtained results have shown that, overall, the ACs produced with an activating agent:precursor ratio of 0.5:1 presented specific surface areas (SBET) between 773 and 1190 m2/g and high percentages of CBZ removed from ultra-pure water solutions, above 80 %, for AC dosages of 0.1 g/L and a contact time of 24 h. The lab-made ACs have shown a more developed porous structure than the reference commercial AC and comparable SBET. Nevertheless, under the same experimental conditions, different production batches resulted in ACs with different properties and performances, highlighting that further research work is required to optimise its production process, making it repeatable.Sendo os fármacos compostos biologicamente ativos, a sua presença nos recursos hídricos tem gerado preocupações devido aos efeitos adversos em organismos não-alvo. Sendo os tratamentos convencionais, aplicados nas estações de tratamento de águas residuais (ETARs), ineficientes para a remoção destes contaminantes, as ETARs são apontadas como a principal fonte de fármacos no meio ambiente. O processo de adsorção, enquanto tratamento avançado para a remoção de fármacos da água, em particular com o uso de carvões ativados (CAs), tem-se mostrado um processo de fácil aplicação e eficiente, sem formação de subprodutos. Como a produção de CAs pode ser um processo dispendioso, devido aos requisitos energéticos e ao uso de precursores de elevado custo, a alternativa pirólise em micro-ondas (MO) de lama primária (LP) da indústria papeleira pode ser uma solução promissora, contribuindo simultaneamente para a valorização de resíduos industriais. Neste trabalho, os CAs foram produzidos por pirólise em MO de LP impregnada com KOH (agente ativante) durante 10 min a 800 W, lavados com ácido clorídrico e crivados para obtenção da fração de partículas com dimensão inferior ou igual a 180 μm. Obtiveram-se diferentes CAs alterando as razões de agente ativante:precursor, nomeadamente 0.5:1, 1:1 e 1.5:1. Os CAs produzidos foram física e quimicamente caraterizados. No sentido de avaliar o desempenho dos CAs produzidos, realizaram-se testes de adsorção em descontínuo com água ultra-pura para determinar a percentagem de adsorção do anti-epilético carbamazepina (CBZ). O efeito da concentração de CA e o efeito do tempo de contacto também foram testados. Os resultados obtidos demonstraram que, de um modo geral, os CAs produzidos numa razão de 0.5:1 de agente ativante:precursor apresentaram áreas superficiais específicas (SBET) entre 773 e 1190 m2/g e elevadas percentagens de remoção de CBZ de soluções de água ultra-pura, acima de 80 %, para concentrações de CA de 0.1 g/L e tempos de contacto de 24 h. Os CAs produzidos em laboratório demonstraram ter uma estrutura porosa mais desenvolvida do que o CA comercial de referência e SBET comparáveis. Todavia, para as mesmas condições experimentais, diferentes lotes de produção originaram CAs com propriedades e desempenhos diferentes, denotando que mais trabalho de investigação deve ser investido de modo a otimizar o seu processo de produção, tornando-o repetível.2018-11-23T16:27:09Z2018-07-30T00:00:00Z2018-07-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/24698TID:202233200engDias, Sandra Raquel da Silvainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:48:09Zoai:ria.ua.pt:10773/24698Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:58:13.011808Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Production of activated carbons by microwave pyrolysis of industrial wastes for the removal of pharmaceuticals from water
title Production of activated carbons by microwave pyrolysis of industrial wastes for the removal of pharmaceuticals from water
spellingShingle Production of activated carbons by microwave pyrolysis of industrial wastes for the removal of pharmaceuticals from water
Dias, Sandra Raquel da Silva
Adsorption
Activated Carbons
Chemical activation
Microwave pyrolysis
Pharmaceuticals
Environment
Water treatment
Waste valorisation.
title_short Production of activated carbons by microwave pyrolysis of industrial wastes for the removal of pharmaceuticals from water
title_full Production of activated carbons by microwave pyrolysis of industrial wastes for the removal of pharmaceuticals from water
title_fullStr Production of activated carbons by microwave pyrolysis of industrial wastes for the removal of pharmaceuticals from water
title_full_unstemmed Production of activated carbons by microwave pyrolysis of industrial wastes for the removal of pharmaceuticals from water
title_sort Production of activated carbons by microwave pyrolysis of industrial wastes for the removal of pharmaceuticals from water
author Dias, Sandra Raquel da Silva
author_facet Dias, Sandra Raquel da Silva
author_role author
dc.contributor.author.fl_str_mv Dias, Sandra Raquel da Silva
dc.subject.por.fl_str_mv Adsorption
Activated Carbons
Chemical activation
Microwave pyrolysis
Pharmaceuticals
Environment
Water treatment
Waste valorisation.
topic Adsorption
Activated Carbons
Chemical activation
Microwave pyrolysis
Pharmaceuticals
Environment
Water treatment
Waste valorisation.
description The presence of pharmaceuticals in water bodies, being biologically active compounds, have raised concerns due to the adverse effects in non-target organisms. With the conventional treatments, applied in the wastewater treatment plants (WWTPs), being inefficient for the removal of these contaminants, WWTPs are pointed out as the main source of pharmaceuticals into the environment. The use of adsorption, as an advanced treatment for the removal of pharmaceuticals from water, in particular by using activated carbons (ACs), has shown to be an easy-handling and cost-efficient process, without sub-products formation. Since the production of ACs can be an expensive process, due to the high energy requirements and the use of expensive precursors, the alternative microwave (MW) pyrolysis of paper mill primary sludge (PS) can be a promising solution, contributing simultaneously for industrial waste valorisation. In the scope of this work, ACs were produced by MW pyrolysis of PS impregnated in KOH (activating agent) for 10 min at 800 W, washed with hydrochloric acid and sieved to obtain the fraction of particles with a size up to 180 μm. Different ACs were obtained by changing activating agent:precursor ratios, namely 0.5:1, 1:1 and 1.5:1. The produced ACs were physico-chemically characterised. In order to assess the performance of the produced ACs, batch adsorption experiments were performed with ultra-pure water to determine the adsorption percentages of the anti-epileptic carbamazepine (CBZ). The effect of AC dosage and the effect of contact time were also tested. The obtained results have shown that, overall, the ACs produced with an activating agent:precursor ratio of 0.5:1 presented specific surface areas (SBET) between 773 and 1190 m2/g and high percentages of CBZ removed from ultra-pure water solutions, above 80 %, for AC dosages of 0.1 g/L and a contact time of 24 h. The lab-made ACs have shown a more developed porous structure than the reference commercial AC and comparable SBET. Nevertheless, under the same experimental conditions, different production batches resulted in ACs with different properties and performances, highlighting that further research work is required to optimise its production process, making it repeatable.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-23T16:27:09Z
2018-07-30T00:00:00Z
2018-07-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/24698
TID:202233200
url http://hdl.handle.net/10773/24698
identifier_str_mv TID:202233200
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137636429856768