Controlling individuals growth in semantic genetic programming through elitist replacement
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
DOI: | 10.1155/2016/8326760 |
Texto Completo: | https://doi.org/10.1155/2016/8326760 |
Resumo: | Castelli, M., Vanneschi, L., & Popovič, A. (2016). Controlling individuals growth in semantic genetic programming through elitist replacement. Computational Intelligence And Neuroscience, 2016, [8326760]. https://doi.org/10.1155/2016/8326760 |
id |
RCAP_127e57967995f93adb3601c7d0e3b950 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/71247 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Controlling individuals growth in semantic genetic programming through elitist replacementNeuroscience(all)Computer Science(all)Mathematics(all)Castelli, M., Vanneschi, L., & Popovič, A. (2016). Controlling individuals growth in semantic genetic programming through elitist replacement. Computational Intelligence And Neuroscience, 2016, [8326760]. https://doi.org/10.1155/2016/8326760In 2012, Moraglio and coauthors introduced new genetic operators for Genetic Programming, called geometric semantic genetic operators. They have the very interesting advantage of inducing a unimodal error surface for any supervised learning problem. At the same time, they have the important drawback of generating very large data models that are usually very hard to understand and interpret. The objective of this work is to alleviate this drawback, still maintaining the advantage. More in particular, we propose an elitist version of geometric semantic operators, in which offspring are accepted in the new population only if they have better fitness than their parents. We present experimental evidence, on five complex real-life test problems, that this simple idea allows us to obtain results of a comparable quality (in terms of fitness), but with much smaller data models, compared to the standard geometric semantic operators. In the final part of the paper, we also explain the reason why we consider this a significant improvement, showing that the proposed elitist operators generate manageable models, while the models generated by the standard operators are so large in size that they can be considered unmanageable.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNCastelli, MauroVanneschi, LeonardoPopovič, Aleš2019-05-30T22:05:35Z20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.1155/2016/8326760eng1687-5265PURE: 2201373http://www.scopus.com/inward/record.url?scp=84956955701&partnerID=8YFLogxKhttps://doi.org/10.1155/2016/8326760info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:39:49Zoai:run.unl.pt:10362/71247Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:39:49Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Controlling individuals growth in semantic genetic programming through elitist replacement |
title |
Controlling individuals growth in semantic genetic programming through elitist replacement |
spellingShingle |
Controlling individuals growth in semantic genetic programming through elitist replacement Controlling individuals growth in semantic genetic programming through elitist replacement Castelli, Mauro Neuroscience(all) Computer Science(all) Mathematics(all) Castelli, Mauro Neuroscience(all) Computer Science(all) Mathematics(all) |
title_short |
Controlling individuals growth in semantic genetic programming through elitist replacement |
title_full |
Controlling individuals growth in semantic genetic programming through elitist replacement |
title_fullStr |
Controlling individuals growth in semantic genetic programming through elitist replacement Controlling individuals growth in semantic genetic programming through elitist replacement |
title_full_unstemmed |
Controlling individuals growth in semantic genetic programming through elitist replacement Controlling individuals growth in semantic genetic programming through elitist replacement |
title_sort |
Controlling individuals growth in semantic genetic programming through elitist replacement |
author |
Castelli, Mauro |
author_facet |
Castelli, Mauro Castelli, Mauro Vanneschi, Leonardo Popovič, Aleš Vanneschi, Leonardo Popovič, Aleš |
author_role |
author |
author2 |
Vanneschi, Leonardo Popovič, Aleš |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
Castelli, Mauro Vanneschi, Leonardo Popovič, Aleš |
dc.subject.por.fl_str_mv |
Neuroscience(all) Computer Science(all) Mathematics(all) |
topic |
Neuroscience(all) Computer Science(all) Mathematics(all) |
description |
Castelli, M., Vanneschi, L., & Popovič, A. (2016). Controlling individuals growth in semantic genetic programming through elitist replacement. Computational Intelligence And Neuroscience, 2016, [8326760]. https://doi.org/10.1155/2016/8326760 |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2016-01-01T00:00:00Z 2019-05-30T22:05:35Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1155/2016/8326760 |
url |
https://doi.org/10.1155/2016/8326760 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1687-5265 PURE: 2201373 http://www.scopus.com/inward/record.url?scp=84956955701&partnerID=8YFLogxK https://doi.org/10.1155/2016/8326760 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1822183191566352384 |
dc.identifier.doi.none.fl_str_mv |
10.1155/2016/8326760 |