Why businesses Ssucceed: financial and non-financial determinants

Detalhes bibliográficos
Autor(a) principal: João Mário De Almeida Caetano
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/162776
Resumo: Micro, small and medium enterprises correspond to 99.9% of non-financial firms in Portugal. These ventures suffer severely from internal and external factors that difficult their maintenance in the market. Matching data from Orbis and Quadros de Pessoal, the current paper studies how financial and non-financial dimensions contribute to the success of a business. Following a logistic regression approach, the designed prediction model precisely forecasts 95.65% and 77.61% of companies failing within one and five years after inception, respectively. It is also able to describe 72.14% of successful firms. The results uncover important insights for different stakeholders in the economy.
id RCAP_12ca223cf51555d05c8f579842d9230f
oai_identifier_str oai:run.unl.pt:10362/162776
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Why businesses Ssucceed: financial and non-financial determinantsSmesPrediction modelNon-financial determinantsLogistic regressionDomínio/Área Científica::Ciências Sociais::Economia e GestãoMicro, small and medium enterprises correspond to 99.9% of non-financial firms in Portugal. These ventures suffer severely from internal and external factors that difficult their maintenance in the market. Matching data from Orbis and Quadros de Pessoal, the current paper studies how financial and non-financial dimensions contribute to the success of a business. Following a logistic regression approach, the designed prediction model precisely forecasts 95.65% and 77.61% of companies failing within one and five years after inception, respectively. It is also able to describe 72.14% of successful firms. The results uncover important insights for different stakeholders in the economy.Brinca, PedroRUNJoão Mário De Almeida Caetano2024-01-26T15:48:50Z2023-01-192023-01-192023-01-19T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/162776TID:203314689enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:45:48Zoai:run.unl.pt:10362/162776Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:59:05.366608Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Why businesses Ssucceed: financial and non-financial determinants
title Why businesses Ssucceed: financial and non-financial determinants
spellingShingle Why businesses Ssucceed: financial and non-financial determinants
João Mário De Almeida Caetano
Smes
Prediction model
Non-financial determinants
Logistic regression
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short Why businesses Ssucceed: financial and non-financial determinants
title_full Why businesses Ssucceed: financial and non-financial determinants
title_fullStr Why businesses Ssucceed: financial and non-financial determinants
title_full_unstemmed Why businesses Ssucceed: financial and non-financial determinants
title_sort Why businesses Ssucceed: financial and non-financial determinants
author João Mário De Almeida Caetano
author_facet João Mário De Almeida Caetano
author_role author
dc.contributor.none.fl_str_mv Brinca, Pedro
RUN
dc.contributor.author.fl_str_mv João Mário De Almeida Caetano
dc.subject.por.fl_str_mv Smes
Prediction model
Non-financial determinants
Logistic regression
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Smes
Prediction model
Non-financial determinants
Logistic regression
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description Micro, small and medium enterprises correspond to 99.9% of non-financial firms in Portugal. These ventures suffer severely from internal and external factors that difficult their maintenance in the market. Matching data from Orbis and Quadros de Pessoal, the current paper studies how financial and non-financial dimensions contribute to the success of a business. Following a logistic regression approach, the designed prediction model precisely forecasts 95.65% and 77.61% of companies failing within one and five years after inception, respectively. It is also able to describe 72.14% of successful firms. The results uncover important insights for different stakeholders in the economy.
publishDate 2023
dc.date.none.fl_str_mv 2023-01-19
2023-01-19
2023-01-19T00:00:00Z
2024-01-26T15:48:50Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/162776
TID:203314689
url http://hdl.handle.net/10362/162776
identifier_str_mv TID:203314689
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138171002290176