Piercing of a boson star by a black hole
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/35226 |
Resumo: | New light fundamental fields are natural candidates for all or a fraction of dark matter. Self-gravitating structures of such fields might be common objects in the universe, and could comprise even galactic halos. These structures would interact gravitationally with black holes, a process of the utmost importance since it dictates their lifetime, the black hole motion, and possible gravitational radiation emission. Here, we study the dynamics of a black hole piercing through a much larger fully relativistic boson star, made of a complex minimally coupled massive scalar without self-interactions. As the black hole pierces through the bosonic structure, it is slowed down by accretion and dynamical friction, giving rise to gravitational-wave emission. Since we are interested in studying the interaction with large and heavy scalar structures, we consider mass ratios up to $q\sim 10$ and length ratios ${\cal L} \sim 62$. Somewhat surprisingly, for all our simulations, the black hole accretes more than 95% of the boson star material, even if an initially small black hole collides with large velocity. This is a consequence of an extreme "tidal capture" process, which binds the black hole and the boson star together, for these mass ratios. We find evidence of a "gravitational atom" left behind as a product of the process. |
id |
RCAP_1307d2ba347f473af159ff3e2e561317 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/35226 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Piercing of a boson star by a black holeNew light fundamental fields are natural candidates for all or a fraction of dark matter. Self-gravitating structures of such fields might be common objects in the universe, and could comprise even galactic halos. These structures would interact gravitationally with black holes, a process of the utmost importance since it dictates their lifetime, the black hole motion, and possible gravitational radiation emission. Here, we study the dynamics of a black hole piercing through a much larger fully relativistic boson star, made of a complex minimally coupled massive scalar without self-interactions. As the black hole pierces through the bosonic structure, it is slowed down by accretion and dynamical friction, giving rise to gravitational-wave emission. Since we are interested in studying the interaction with large and heavy scalar structures, we consider mass ratios up to $q\sim 10$ and length ratios ${\cal L} \sim 62$. Somewhat surprisingly, for all our simulations, the black hole accretes more than 95% of the boson star material, even if an initially small black hole collides with large velocity. This is a consequence of an extreme "tidal capture" process, which binds the black hole and the boson star together, for these mass ratios. We find evidence of a "gravitational atom" left behind as a product of the process.American Physical Society2022-11-21T11:27:11Z2022-05-31T00:00:00Z2022-05-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/35226eng1550-799810.1103/PhysRevD.106.044030Cardoso, VitorIkeda, TaishiZhong, ZhenZilhão, Miguelinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:07:42Zoai:ria.ua.pt:10773/35226Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:14.772324Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Piercing of a boson star by a black hole |
title |
Piercing of a boson star by a black hole |
spellingShingle |
Piercing of a boson star by a black hole Cardoso, Vitor |
title_short |
Piercing of a boson star by a black hole |
title_full |
Piercing of a boson star by a black hole |
title_fullStr |
Piercing of a boson star by a black hole |
title_full_unstemmed |
Piercing of a boson star by a black hole |
title_sort |
Piercing of a boson star by a black hole |
author |
Cardoso, Vitor |
author_facet |
Cardoso, Vitor Ikeda, Taishi Zhong, Zhen Zilhão, Miguel |
author_role |
author |
author2 |
Ikeda, Taishi Zhong, Zhen Zilhão, Miguel |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Cardoso, Vitor Ikeda, Taishi Zhong, Zhen Zilhão, Miguel |
description |
New light fundamental fields are natural candidates for all or a fraction of dark matter. Self-gravitating structures of such fields might be common objects in the universe, and could comprise even galactic halos. These structures would interact gravitationally with black holes, a process of the utmost importance since it dictates their lifetime, the black hole motion, and possible gravitational radiation emission. Here, we study the dynamics of a black hole piercing through a much larger fully relativistic boson star, made of a complex minimally coupled massive scalar without self-interactions. As the black hole pierces through the bosonic structure, it is slowed down by accretion and dynamical friction, giving rise to gravitational-wave emission. Since we are interested in studying the interaction with large and heavy scalar structures, we consider mass ratios up to $q\sim 10$ and length ratios ${\cal L} \sim 62$. Somewhat surprisingly, for all our simulations, the black hole accretes more than 95% of the boson star material, even if an initially small black hole collides with large velocity. This is a consequence of an extreme "tidal capture" process, which binds the black hole and the boson star together, for these mass ratios. We find evidence of a "gravitational atom" left behind as a product of the process. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-21T11:27:11Z 2022-05-31T00:00:00Z 2022-05-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/35226 |
url |
http://hdl.handle.net/10773/35226 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1550-7998 10.1103/PhysRevD.106.044030 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137717331689472 |