The neurobiology of syntax: beyond string sets

Detalhes bibliográficos
Autor(a) principal: Petersson, Karl Magnus
Data de Publicação: 2012
Outros Autores: Hagoort, Peter
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/11792
Resumo: The human capacity to acquire language is an outstanding scientific challenge to understand. Somehow our language capacities arise from the way the human brain processes, develops and learns in interaction with its environment. To set the stage, we begin with a summary of what is known about the neural organization of language and what our artificial grammar learning (AGL) studies have revealed. We then review the Chomsky hierarchy in the context of the theory of computation and formal learning theory. Finally, we outline a neurobiological model of language acquisition and processing based on an adaptive, recurrent, spiking network architecture. This architecture implements an asynchronous, event-driven, parallel system for recursive processing. We conclude that the brain represents grammars (or more precisely, the parser/generator) in its connectivity, and its ability for syntax is based on neurobiological infrastructure for structured sequence processing. The acquisition of this ability is accounted for in an adaptive dynamical systems framework. Artificial language learning (ALL) paradigms might be used to study the acquisition process within such a framework, as well as the processing properties of the underlying neurobiological infrastructure. However, it is necessary to combine and constrain the interpretation of ALL results by theoretical models and empirical studies on natural language processing. Given that the faculty of language is captured by classical computational models to a significant extent, and that these can be embedded in dynamic network architectures, there is hope that significant progress can be made in understanding the neurobiology of the language faculty.
id RCAP_131d886dc4d939054e341c50d4353c9c
oai_identifier_str oai:sapientia.ualg.pt:10400.1/11792
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The neurobiology of syntax: beyond string setsEmbedded english sentencesArtificial grammarDynamical-systemsFunctional MriWorking-memoryHuman languageBrocas regionComprehensionBrainAnalogThe human capacity to acquire language is an outstanding scientific challenge to understand. Somehow our language capacities arise from the way the human brain processes, develops and learns in interaction with its environment. To set the stage, we begin with a summary of what is known about the neural organization of language and what our artificial grammar learning (AGL) studies have revealed. We then review the Chomsky hierarchy in the context of the theory of computation and formal learning theory. Finally, we outline a neurobiological model of language acquisition and processing based on an adaptive, recurrent, spiking network architecture. This architecture implements an asynchronous, event-driven, parallel system for recursive processing. We conclude that the brain represents grammars (or more precisely, the parser/generator) in its connectivity, and its ability for syntax is based on neurobiological infrastructure for structured sequence processing. The acquisition of this ability is accounted for in an adaptive dynamical systems framework. Artificial language learning (ALL) paradigms might be used to study the acquisition process within such a framework, as well as the processing properties of the underlying neurobiological infrastructure. However, it is necessary to combine and constrain the interpretation of ALL results by theoretical models and empirical studies on natural language processing. Given that the faculty of language is captured by classical computational models to a significant extent, and that these can be embedded in dynamic network architectures, there is hope that significant progress can be made in understanding the neurobiology of the language faculty.Max Planck Institute for Psycholinguistics; Donders Institute for Brain, Cognition and Behaviour; Fundacao para a Ciencia e Tecnologia (IBB/CBME, LA, FEDER/POCI) [PTDC/PSI-PCO/110734/2009]; VetenskapsradetRoyal SocSapientiaPetersson, Karl MagnusHagoort, Peter2018-12-07T14:57:58Z20122012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/11792eng0962-843610.1098/rstb.2012.0101info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:23:39Zoai:sapientia.ualg.pt:10400.1/11792Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:03:14.841884Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The neurobiology of syntax: beyond string sets
title The neurobiology of syntax: beyond string sets
spellingShingle The neurobiology of syntax: beyond string sets
Petersson, Karl Magnus
Embedded english sentences
Artificial grammar
Dynamical-systems
Functional Mri
Working-memory
Human language
Brocas region
Comprehension
Brain
Analog
title_short The neurobiology of syntax: beyond string sets
title_full The neurobiology of syntax: beyond string sets
title_fullStr The neurobiology of syntax: beyond string sets
title_full_unstemmed The neurobiology of syntax: beyond string sets
title_sort The neurobiology of syntax: beyond string sets
author Petersson, Karl Magnus
author_facet Petersson, Karl Magnus
Hagoort, Peter
author_role author
author2 Hagoort, Peter
author2_role author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Petersson, Karl Magnus
Hagoort, Peter
dc.subject.por.fl_str_mv Embedded english sentences
Artificial grammar
Dynamical-systems
Functional Mri
Working-memory
Human language
Brocas region
Comprehension
Brain
Analog
topic Embedded english sentences
Artificial grammar
Dynamical-systems
Functional Mri
Working-memory
Human language
Brocas region
Comprehension
Brain
Analog
description The human capacity to acquire language is an outstanding scientific challenge to understand. Somehow our language capacities arise from the way the human brain processes, develops and learns in interaction with its environment. To set the stage, we begin with a summary of what is known about the neural organization of language and what our artificial grammar learning (AGL) studies have revealed. We then review the Chomsky hierarchy in the context of the theory of computation and formal learning theory. Finally, we outline a neurobiological model of language acquisition and processing based on an adaptive, recurrent, spiking network architecture. This architecture implements an asynchronous, event-driven, parallel system for recursive processing. We conclude that the brain represents grammars (or more precisely, the parser/generator) in its connectivity, and its ability for syntax is based on neurobiological infrastructure for structured sequence processing. The acquisition of this ability is accounted for in an adaptive dynamical systems framework. Artificial language learning (ALL) paradigms might be used to study the acquisition process within such a framework, as well as the processing properties of the underlying neurobiological infrastructure. However, it is necessary to combine and constrain the interpretation of ALL results by theoretical models and empirical studies on natural language processing. Given that the faculty of language is captured by classical computational models to a significant extent, and that these can be embedded in dynamic network architectures, there is hope that significant progress can be made in understanding the neurobiology of the language faculty.
publishDate 2012
dc.date.none.fl_str_mv 2012
2012-01-01T00:00:00Z
2018-12-07T14:57:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/11792
url http://hdl.handle.net/10400.1/11792
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0962-8436
10.1098/rstb.2012.0101
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Royal Soc
publisher.none.fl_str_mv Royal Soc
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133267051413504