Exploring SLUG
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/161429 |
Resumo: | Rodrigues, N. M., Batista, J. E., La Cava, W., Vanneschi, L., & Silva, S. (2024). Exploring SLUG: Feature Selection Using Genetic Algorithms and Genetic Programming. SN Computer Science, 5(1), 1-17. [91]. https://doi.org/10.1007/s42979-023-02106-3 --- Open access funding provided by FCT|FCCN (b-on). This work was partially supported by the FCT, Portugal, through funding of the LASIGE Research Unit (UIDB/00408/2020 and UIDP/00408/2020); MAR2020 program via project MarCODE (MAR$$-$$01.03.01-FEAMP-0047); project AICE (DSAIPA/DS/0113/2019). Nuno Rodrigues and João Batista were supported by PhD Grants 2021/05322/BD and SFRH/BD/143972/2019, respectively; William La Cava was supported by the National Library Of Medicine of the National Institutes of Health under Award Number R00LM012926 |
id |
RCAP_139f21dd3865ba7c3bbb4dcd27c97826 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/161429 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Exploring SLUGFeature Selection Using Genetic Algorithms and Genetic ProgrammingFeature selectionEpistasisGenetic ProgrammingGenetic algorithmsWrapperLearnerMachine learningComputer Science(all)Computer Science ApplicationsComputer Networks and CommunicationsComputer Graphics and Computer-Aided DesignComputational Theory and MathematicsArtificial IntelligenceRodrigues, N. M., Batista, J. E., La Cava, W., Vanneschi, L., & Silva, S. (2024). Exploring SLUG: Feature Selection Using Genetic Algorithms and Genetic Programming. SN Computer Science, 5(1), 1-17. [91]. https://doi.org/10.1007/s42979-023-02106-3 --- Open access funding provided by FCT|FCCN (b-on). This work was partially supported by the FCT, Portugal, through funding of the LASIGE Research Unit (UIDB/00408/2020 and UIDP/00408/2020); MAR2020 program via project MarCODE (MAR$$-$$01.03.01-FEAMP-0047); project AICE (DSAIPA/DS/0113/2019). Nuno Rodrigues and João Batista were supported by PhD Grants 2021/05322/BD and SFRH/BD/143972/2019, respectively; William La Cava was supported by the National Library Of Medicine of the National Institutes of Health under Award Number R00LM012926We present SLUG, a recent method that uses genetic algorithms as a wrapper for genetic programming and performs feature selection while inducing models. SLUG was shown to be successful on different types of classification tasks, achieving state-of-the-art results on the synthetic datasets produced by GAMETES, a tool for embedding epistatic gene–gene interactions into noisy datasets. SLUG has also been studied and modified to demonstrate that its two elements, wrapper and learner, are the right combination that grants it success. We report these results and test SLUG on an additional six GAMETES datasets of increased difficulty, for a total of four regular and 16 epistatic datasets. Despite its slowness, SLUG achieves the best results and solves all but the most difficult classification tasks. We perform further explorations of its inner dynamics and discover how to improve the feature selection by enriching the communication between wrapper and learner, thus taking the first step toward a new and more powerful SLUG.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNRodrigues, Nuno M.Batista, João E.La Cava, WilliamVanneschi, LeonardoSilva, Sara2023-12-18T22:38:32Z2024-012024-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article17application/pdfhttp://hdl.handle.net/10362/161429eng2662-995XPURE: 78657697https://doi.org/10.1007/s42979-023-02106-3info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:44:19Zoai:run.unl.pt:10362/161429Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:58:31.382492Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Exploring SLUG Feature Selection Using Genetic Algorithms and Genetic Programming |
title |
Exploring SLUG |
spellingShingle |
Exploring SLUG Rodrigues, Nuno M. Feature selection Epistasis Genetic Programming Genetic algorithms Wrapper Learner Machine learning Computer Science(all) Computer Science Applications Computer Networks and Communications Computer Graphics and Computer-Aided Design Computational Theory and Mathematics Artificial Intelligence |
title_short |
Exploring SLUG |
title_full |
Exploring SLUG |
title_fullStr |
Exploring SLUG |
title_full_unstemmed |
Exploring SLUG |
title_sort |
Exploring SLUG |
author |
Rodrigues, Nuno M. |
author_facet |
Rodrigues, Nuno M. Batista, João E. La Cava, William Vanneschi, Leonardo Silva, Sara |
author_role |
author |
author2 |
Batista, João E. La Cava, William Vanneschi, Leonardo Silva, Sara |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Rodrigues, Nuno M. Batista, João E. La Cava, William Vanneschi, Leonardo Silva, Sara |
dc.subject.por.fl_str_mv |
Feature selection Epistasis Genetic Programming Genetic algorithms Wrapper Learner Machine learning Computer Science(all) Computer Science Applications Computer Networks and Communications Computer Graphics and Computer-Aided Design Computational Theory and Mathematics Artificial Intelligence |
topic |
Feature selection Epistasis Genetic Programming Genetic algorithms Wrapper Learner Machine learning Computer Science(all) Computer Science Applications Computer Networks and Communications Computer Graphics and Computer-Aided Design Computational Theory and Mathematics Artificial Intelligence |
description |
Rodrigues, N. M., Batista, J. E., La Cava, W., Vanneschi, L., & Silva, S. (2024). Exploring SLUG: Feature Selection Using Genetic Algorithms and Genetic Programming. SN Computer Science, 5(1), 1-17. [91]. https://doi.org/10.1007/s42979-023-02106-3 --- Open access funding provided by FCT|FCCN (b-on). This work was partially supported by the FCT, Portugal, through funding of the LASIGE Research Unit (UIDB/00408/2020 and UIDP/00408/2020); MAR2020 program via project MarCODE (MAR$$-$$01.03.01-FEAMP-0047); project AICE (DSAIPA/DS/0113/2019). Nuno Rodrigues and João Batista were supported by PhD Grants 2021/05322/BD and SFRH/BD/143972/2019, respectively; William La Cava was supported by the National Library Of Medicine of the National Institutes of Health under Award Number R00LM012926 |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-18T22:38:32Z 2024-01 2024-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/161429 |
url |
http://hdl.handle.net/10362/161429 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2662-995X PURE: 78657697 https://doi.org/10.1007/s42979-023-02106-3 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
17 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138165849587712 |