Post-mineralization, cogenetic magmatism at the Sungun Cu-Mo porphyry deposit (Northwest Iran): protracted melting and extraction in an arc system

Detalhes bibliográficos
Autor(a) principal: Kamali, A.A.
Data de Publicação: 2018
Outros Autores: Moayyed, M., Amel, N., Hosseinzadeh, M.R., Mohammadiha, K., Santos, José Francisco, Brenna, M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/28839
Resumo: The Sungun porphyry ore deposit is located in Eastern Azarbaijan province, Northwestern Iran. The oldest intrusive pulse in the region is a quartz-monzonite pluton, which hosts the porphyry copper-molybdenum mineralization. The Sungun Copper Mine includes the mineralized Sungun porphyry as well as six groups of cross-cutting and lithologically distinct post-mineralization dykes. The composition of these dykes ranges from quartz diorite, gabbro, diorite, dacite, lamprophyre, and microdiorite. Quartz diorite and dacite dykes are the oldest and youngest dykes, respectively. Based on their cross-cutting relationships, the composition of the dykes tend to become more primitive through time. The dykes strike Northwest–Southeast with Southwest dip, sub-parallel to the reverse faults within the deposit area. The lamprophyric dykes range from phonotephrite, to trachybasalt, tephrite, and basanite. The quartz-monzonite porphyry (SP) and the post-mineralization dykes (DK1-DK3) have clear and distinct negative anomalies of Ti, Zr, P, Pr, Ce, and Nb, as well as positive anomalies of Cs, U, K, Pb, and Nd with respect to primitive mantle. Microdioritic dykes (MDI) show depletion of Ti, Nb, P, Ta, Th, Yb, and Zr, and enrichment of Cs, Ba, U, Pb, Nd. The similarities in trace element abundances and patterns in the porphyry and post-mineralization calc-alkaline dykes implies a single source and fractional crystallization as the main mechanism controlling magmatic evolution in a collisional environment. Lamprophyric dykes have enrichment of LREE and LILE and depletion of HREE and HFSE such as Ti, Nb, and Ta. The parent magma of the lamprophyric dykes (LAM) was likely derived by low degrees of melting of a garnet lherzolite mantle peridotite. The 87Sr/86Sr and 143Nd/144Nd ratios range from 0.704617 to 0.706464 and from 0.512648 to 0.512773 for the dykes suggesting that the parental magmas came from a progressively more enriched mantle. Isotope ratios of 87Sr/86Sr and 143Nd/144Nd support a cogenetic relationship of porphyry and calc-alkaline dykes, except for the microdiorite ones. A common primary melt underwent gravity differentiation in a deep magmatic chamber to form a dioritic magma. This subsequently migrated to shallower levels to evolve further and feed individual dyke groups into the Sungun porphyry.
id RCAP_145e6a05acc57c5ed92c09542131763b
oai_identifier_str oai:ria.ua.pt:10773/28839
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Post-mineralization, cogenetic magmatism at the Sungun Cu-Mo porphyry deposit (Northwest Iran): protracted melting and extraction in an arc systemCogenetic magmatismDioritic magmaPost-mineralization dykesSungunPorphyry depositThe Sungun porphyry ore deposit is located in Eastern Azarbaijan province, Northwestern Iran. The oldest intrusive pulse in the region is a quartz-monzonite pluton, which hosts the porphyry copper-molybdenum mineralization. The Sungun Copper Mine includes the mineralized Sungun porphyry as well as six groups of cross-cutting and lithologically distinct post-mineralization dykes. The composition of these dykes ranges from quartz diorite, gabbro, diorite, dacite, lamprophyre, and microdiorite. Quartz diorite and dacite dykes are the oldest and youngest dykes, respectively. Based on their cross-cutting relationships, the composition of the dykes tend to become more primitive through time. The dykes strike Northwest–Southeast with Southwest dip, sub-parallel to the reverse faults within the deposit area. The lamprophyric dykes range from phonotephrite, to trachybasalt, tephrite, and basanite. The quartz-monzonite porphyry (SP) and the post-mineralization dykes (DK1-DK3) have clear and distinct negative anomalies of Ti, Zr, P, Pr, Ce, and Nb, as well as positive anomalies of Cs, U, K, Pb, and Nd with respect to primitive mantle. Microdioritic dykes (MDI) show depletion of Ti, Nb, P, Ta, Th, Yb, and Zr, and enrichment of Cs, Ba, U, Pb, Nd. The similarities in trace element abundances and patterns in the porphyry and post-mineralization calc-alkaline dykes implies a single source and fractional crystallization as the main mechanism controlling magmatic evolution in a collisional environment. Lamprophyric dykes have enrichment of LREE and LILE and depletion of HREE and HFSE such as Ti, Nb, and Ta. The parent magma of the lamprophyric dykes (LAM) was likely derived by low degrees of melting of a garnet lherzolite mantle peridotite. The 87Sr/86Sr and 143Nd/144Nd ratios range from 0.704617 to 0.706464 and from 0.512648 to 0.512773 for the dykes suggesting that the parental magmas came from a progressively more enriched mantle. Isotope ratios of 87Sr/86Sr and 143Nd/144Nd support a cogenetic relationship of porphyry and calc-alkaline dykes, except for the microdiorite ones. A common primary melt underwent gravity differentiation in a deep magmatic chamber to form a dioritic magma. This subsequently migrated to shallower levels to evolve further and feed individual dyke groups into the Sungun porphyry.MDPI2020-07-13T14:55:13Z2018-01-01T00:00:00Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/28839eng2075-163X10.3390/min8120588Kamali, A.A.Moayyed, M.Amel, N.Hosseinzadeh, M.R.Mohammadiha, K.Santos, José FranciscoBrenna, M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:55:46Zoai:ria.ua.pt:10773/28839Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:17.232584Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Post-mineralization, cogenetic magmatism at the Sungun Cu-Mo porphyry deposit (Northwest Iran): protracted melting and extraction in an arc system
title Post-mineralization, cogenetic magmatism at the Sungun Cu-Mo porphyry deposit (Northwest Iran): protracted melting and extraction in an arc system
spellingShingle Post-mineralization, cogenetic magmatism at the Sungun Cu-Mo porphyry deposit (Northwest Iran): protracted melting and extraction in an arc system
Kamali, A.A.
Cogenetic magmatism
Dioritic magma
Post-mineralization dykes
Sungun
Porphyry deposit
title_short Post-mineralization, cogenetic magmatism at the Sungun Cu-Mo porphyry deposit (Northwest Iran): protracted melting and extraction in an arc system
title_full Post-mineralization, cogenetic magmatism at the Sungun Cu-Mo porphyry deposit (Northwest Iran): protracted melting and extraction in an arc system
title_fullStr Post-mineralization, cogenetic magmatism at the Sungun Cu-Mo porphyry deposit (Northwest Iran): protracted melting and extraction in an arc system
title_full_unstemmed Post-mineralization, cogenetic magmatism at the Sungun Cu-Mo porphyry deposit (Northwest Iran): protracted melting and extraction in an arc system
title_sort Post-mineralization, cogenetic magmatism at the Sungun Cu-Mo porphyry deposit (Northwest Iran): protracted melting and extraction in an arc system
author Kamali, A.A.
author_facet Kamali, A.A.
Moayyed, M.
Amel, N.
Hosseinzadeh, M.R.
Mohammadiha, K.
Santos, José Francisco
Brenna, M.
author_role author
author2 Moayyed, M.
Amel, N.
Hosseinzadeh, M.R.
Mohammadiha, K.
Santos, José Francisco
Brenna, M.
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Kamali, A.A.
Moayyed, M.
Amel, N.
Hosseinzadeh, M.R.
Mohammadiha, K.
Santos, José Francisco
Brenna, M.
dc.subject.por.fl_str_mv Cogenetic magmatism
Dioritic magma
Post-mineralization dykes
Sungun
Porphyry deposit
topic Cogenetic magmatism
Dioritic magma
Post-mineralization dykes
Sungun
Porphyry deposit
description The Sungun porphyry ore deposit is located in Eastern Azarbaijan province, Northwestern Iran. The oldest intrusive pulse in the region is a quartz-monzonite pluton, which hosts the porphyry copper-molybdenum mineralization. The Sungun Copper Mine includes the mineralized Sungun porphyry as well as six groups of cross-cutting and lithologically distinct post-mineralization dykes. The composition of these dykes ranges from quartz diorite, gabbro, diorite, dacite, lamprophyre, and microdiorite. Quartz diorite and dacite dykes are the oldest and youngest dykes, respectively. Based on their cross-cutting relationships, the composition of the dykes tend to become more primitive through time. The dykes strike Northwest–Southeast with Southwest dip, sub-parallel to the reverse faults within the deposit area. The lamprophyric dykes range from phonotephrite, to trachybasalt, tephrite, and basanite. The quartz-monzonite porphyry (SP) and the post-mineralization dykes (DK1-DK3) have clear and distinct negative anomalies of Ti, Zr, P, Pr, Ce, and Nb, as well as positive anomalies of Cs, U, K, Pb, and Nd with respect to primitive mantle. Microdioritic dykes (MDI) show depletion of Ti, Nb, P, Ta, Th, Yb, and Zr, and enrichment of Cs, Ba, U, Pb, Nd. The similarities in trace element abundances and patterns in the porphyry and post-mineralization calc-alkaline dykes implies a single source and fractional crystallization as the main mechanism controlling magmatic evolution in a collisional environment. Lamprophyric dykes have enrichment of LREE and LILE and depletion of HREE and HFSE such as Ti, Nb, and Ta. The parent magma of the lamprophyric dykes (LAM) was likely derived by low degrees of melting of a garnet lherzolite mantle peridotite. The 87Sr/86Sr and 143Nd/144Nd ratios range from 0.704617 to 0.706464 and from 0.512648 to 0.512773 for the dykes suggesting that the parental magmas came from a progressively more enriched mantle. Isotope ratios of 87Sr/86Sr and 143Nd/144Nd support a cogenetic relationship of porphyry and calc-alkaline dykes, except for the microdiorite ones. A common primary melt underwent gravity differentiation in a deep magmatic chamber to form a dioritic magma. This subsequently migrated to shallower levels to evolve further and feed individual dyke groups into the Sungun porphyry.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-01T00:00:00Z
2018
2020-07-13T14:55:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/28839
url http://hdl.handle.net/10773/28839
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2075-163X
10.3390/min8120588
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137668773183488