Archaeological site identification on aerial imagery using deep learning: ODYSSEY project
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/41030 |
Resumo: | This dissertation was developed within the ODYSEY project, which aims to develop a platform intended for archaeologists. Within this context, this dissertation aims to identify archaeological sites from images formed through the data provided by a LiDAR system. The study area is Alto Minho, a Portuguese sub-region belonging to the Northern region, and famous for the preservation of historical structures. This work focuses on the study of tumuli, which are buildings of stone and sand that would have the function of hiding and protecting graves, and the hillforts, which are urban constructions of the Copper Age and Iron Age. In a clear way, the goal is to elaborate a system capable of locating these historical objects from an aerial image. The work ranges from the creation of the database, the implementation of deep learning models, to the inference of the results. |
id |
RCAP_1486ab357d0fd1bac250230d9a78ec09 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/41030 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Archaeological site identification on aerial imagery using deep learning: ODYSSEY projectArchaeologyDeep learningLiDARUnetYOLOv7This dissertation was developed within the ODYSEY project, which aims to develop a platform intended for archaeologists. Within this context, this dissertation aims to identify archaeological sites from images formed through the data provided by a LiDAR system. The study area is Alto Minho, a Portuguese sub-region belonging to the Northern region, and famous for the preservation of historical structures. This work focuses on the study of tumuli, which are buildings of stone and sand that would have the function of hiding and protecting graves, and the hillforts, which are urban constructions of the Copper Age and Iron Age. In a clear way, the goal is to elaborate a system capable of locating these historical objects from an aerial image. The work ranges from the creation of the database, the implementation of deep learning models, to the inference of the results.Esta dissertação foi desenvolvida no âmbito do projeto ODYSEY, que visa o desenvolvimento de uma plataforma destinada a arqueólogos. Neste contexto, esta dissertação tem como objetivo a identificação de sítios arqueológicos a partir de imagens formadas através dos dados fornecidos por um sistema LiDAR. A área de estudo é o Alto Minho, uma sub-região portuguesa pertencente à região Norte, e famosa pela preservação de estruturas históricas. Este trabalho centra-se no estudo das mamoas, que são construções de pedra e areia que teriam a função de esconder e proteger sepulturas, e dos castelos, que são construções urbanas da Idade do Cobre e da Idade do Ferro. De uma forma clara, o objetivo é elaborar um sistema capaz de localizar estes objectos históricos a partir de uma imagem aérea. O trabalho vai desde a criação da base de dados, a implementação de modelos de deep learning, até a inferência dos resultados.2024-03-12T09:02:53Z2023-07-04T00:00:00Z2023-07-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/41030engMaia, Leonardo dos Santosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-18T01:47:52Zoai:ria.ua.pt:10773/41030Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T04:02:08.768733Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Archaeological site identification on aerial imagery using deep learning: ODYSSEY project |
title |
Archaeological site identification on aerial imagery using deep learning: ODYSSEY project |
spellingShingle |
Archaeological site identification on aerial imagery using deep learning: ODYSSEY project Maia, Leonardo dos Santos Archaeology Deep learning LiDAR Unet YOLOv7 |
title_short |
Archaeological site identification on aerial imagery using deep learning: ODYSSEY project |
title_full |
Archaeological site identification on aerial imagery using deep learning: ODYSSEY project |
title_fullStr |
Archaeological site identification on aerial imagery using deep learning: ODYSSEY project |
title_full_unstemmed |
Archaeological site identification on aerial imagery using deep learning: ODYSSEY project |
title_sort |
Archaeological site identification on aerial imagery using deep learning: ODYSSEY project |
author |
Maia, Leonardo dos Santos |
author_facet |
Maia, Leonardo dos Santos |
author_role |
author |
dc.contributor.author.fl_str_mv |
Maia, Leonardo dos Santos |
dc.subject.por.fl_str_mv |
Archaeology Deep learning LiDAR Unet YOLOv7 |
topic |
Archaeology Deep learning LiDAR Unet YOLOv7 |
description |
This dissertation was developed within the ODYSEY project, which aims to develop a platform intended for archaeologists. Within this context, this dissertation aims to identify archaeological sites from images formed through the data provided by a LiDAR system. The study area is Alto Minho, a Portuguese sub-region belonging to the Northern region, and famous for the preservation of historical structures. This work focuses on the study of tumuli, which are buildings of stone and sand that would have the function of hiding and protecting graves, and the hillforts, which are urban constructions of the Copper Age and Iron Age. In a clear way, the goal is to elaborate a system capable of locating these historical objects from an aerial image. The work ranges from the creation of the database, the implementation of deep learning models, to the inference of the results. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-04T00:00:00Z 2023-07-04 2024-03-12T09:02:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/41030 |
url |
http://hdl.handle.net/10773/41030 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138193886412800 |