Archaeological site identification on aerial imagery using deep learning: ODYSSEY project

Detalhes bibliográficos
Autor(a) principal: Maia, Leonardo dos Santos
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/41030
Resumo: This dissertation was developed within the ODYSEY project, which aims to develop a platform intended for archaeologists. Within this context, this dissertation aims to identify archaeological sites from images formed through the data provided by a LiDAR system. The study area is Alto Minho, a Portuguese sub-region belonging to the Northern region, and famous for the preservation of historical structures. This work focuses on the study of tumuli, which are buildings of stone and sand that would have the function of hiding and protecting graves, and the hillforts, which are urban constructions of the Copper Age and Iron Age. In a clear way, the goal is to elaborate a system capable of locating these historical objects from an aerial image. The work ranges from the creation of the database, the implementation of deep learning models, to the inference of the results.
id RCAP_1486ab357d0fd1bac250230d9a78ec09
oai_identifier_str oai:ria.ua.pt:10773/41030
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Archaeological site identification on aerial imagery using deep learning: ODYSSEY projectArchaeologyDeep learningLiDARUnetYOLOv7This dissertation was developed within the ODYSEY project, which aims to develop a platform intended for archaeologists. Within this context, this dissertation aims to identify archaeological sites from images formed through the data provided by a LiDAR system. The study area is Alto Minho, a Portuguese sub-region belonging to the Northern region, and famous for the preservation of historical structures. This work focuses on the study of tumuli, which are buildings of stone and sand that would have the function of hiding and protecting graves, and the hillforts, which are urban constructions of the Copper Age and Iron Age. In a clear way, the goal is to elaborate a system capable of locating these historical objects from an aerial image. The work ranges from the creation of the database, the implementation of deep learning models, to the inference of the results.Esta dissertação foi desenvolvida no âmbito do projeto ODYSEY, que visa o desenvolvimento de uma plataforma destinada a arqueólogos. Neste contexto, esta dissertação tem como objetivo a identificação de sítios arqueológicos a partir de imagens formadas através dos dados fornecidos por um sistema LiDAR. A área de estudo é o Alto Minho, uma sub-região portuguesa pertencente à região Norte, e famosa pela preservação de estruturas históricas. Este trabalho centra-se no estudo das mamoas, que são construções de pedra e areia que teriam a função de esconder e proteger sepulturas, e dos castelos, que são construções urbanas da Idade do Cobre e da Idade do Ferro. De uma forma clara, o objetivo é elaborar um sistema capaz de localizar estes objectos históricos a partir de uma imagem aérea. O trabalho vai desde a criação da base de dados, a implementação de modelos de deep learning, até a inferência dos resultados.2024-03-12T09:02:53Z2023-07-04T00:00:00Z2023-07-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/41030engMaia, Leonardo dos Santosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-18T01:47:52Zoai:ria.ua.pt:10773/41030Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T04:02:08.768733Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Archaeological site identification on aerial imagery using deep learning: ODYSSEY project
title Archaeological site identification on aerial imagery using deep learning: ODYSSEY project
spellingShingle Archaeological site identification on aerial imagery using deep learning: ODYSSEY project
Maia, Leonardo dos Santos
Archaeology
Deep learning
LiDAR
Unet
YOLOv7
title_short Archaeological site identification on aerial imagery using deep learning: ODYSSEY project
title_full Archaeological site identification on aerial imagery using deep learning: ODYSSEY project
title_fullStr Archaeological site identification on aerial imagery using deep learning: ODYSSEY project
title_full_unstemmed Archaeological site identification on aerial imagery using deep learning: ODYSSEY project
title_sort Archaeological site identification on aerial imagery using deep learning: ODYSSEY project
author Maia, Leonardo dos Santos
author_facet Maia, Leonardo dos Santos
author_role author
dc.contributor.author.fl_str_mv Maia, Leonardo dos Santos
dc.subject.por.fl_str_mv Archaeology
Deep learning
LiDAR
Unet
YOLOv7
topic Archaeology
Deep learning
LiDAR
Unet
YOLOv7
description This dissertation was developed within the ODYSEY project, which aims to develop a platform intended for archaeologists. Within this context, this dissertation aims to identify archaeological sites from images formed through the data provided by a LiDAR system. The study area is Alto Minho, a Portuguese sub-region belonging to the Northern region, and famous for the preservation of historical structures. This work focuses on the study of tumuli, which are buildings of stone and sand that would have the function of hiding and protecting graves, and the hillforts, which are urban constructions of the Copper Age and Iron Age. In a clear way, the goal is to elaborate a system capable of locating these historical objects from an aerial image. The work ranges from the creation of the database, the implementation of deep learning models, to the inference of the results.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-04T00:00:00Z
2023-07-04
2024-03-12T09:02:53Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/41030
url http://hdl.handle.net/10773/41030
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138193886412800