Privacy-Preserving Data Mining: Methods, Metrics, and Applications

Detalhes bibliográficos
Autor(a) principal: Mendes, Ricardo
Data de Publicação: 2017
Outros Autores: Vilela, João P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/102068
https://doi.org/10.1109/ACCESS.2017.2706947
Resumo: The collection and analysis of data are continuously growing due to the pervasiveness of computing devices. The analysis of such information is fostering businesses and contributing bene cially to the society in many different elds. However, this storage and ow of possibly sensitive data poses serious privacy concerns. Methods that allow the knowledge extraction from data, while preserving privacy, are known as privacy-preserving data mining (PPDM) techniques. This paper surveys the most relevant PPDM techniques from the literature and the metrics used to evaluate such techniques and presents typical applications of PPDM methods in relevant elds. Furthermore, the current challenges and open issues in PPDM are discussed.
id RCAP_148a41c07678b50d9c7b7667ce6ff99d
oai_identifier_str oai:estudogeral.uc.pt:10316/102068
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Privacy-Preserving Data Mining: Methods, Metrics, and Applicationsprivacydata miningprivacy-preserving data miningmetricsknowledge extractionThe collection and analysis of data are continuously growing due to the pervasiveness of computing devices. The analysis of such information is fostering businesses and contributing bene cially to the society in many different elds. However, this storage and ow of possibly sensitive data poses serious privacy concerns. Methods that allow the knowledge extraction from data, while preserving privacy, are known as privacy-preserving data mining (PPDM) techniques. This paper surveys the most relevant PPDM techniques from the literature and the metrics used to evaluate such techniques and presents typical applications of PPDM methods in relevant elds. Furthermore, the current challenges and open issues in PPDM are discussed.2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/102068http://hdl.handle.net/10316/102068https://doi.org/10.1109/ACCESS.2017.2706947eng2169-3536Mendes, RicardoVilela, João P.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-23T20:43:17Zoai:estudogeral.uc.pt:10316/102068Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:19:06.563524Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Privacy-Preserving Data Mining: Methods, Metrics, and Applications
title Privacy-Preserving Data Mining: Methods, Metrics, and Applications
spellingShingle Privacy-Preserving Data Mining: Methods, Metrics, and Applications
Mendes, Ricardo
privacy
data mining
privacy-preserving data mining
metrics
knowledge extraction
title_short Privacy-Preserving Data Mining: Methods, Metrics, and Applications
title_full Privacy-Preserving Data Mining: Methods, Metrics, and Applications
title_fullStr Privacy-Preserving Data Mining: Methods, Metrics, and Applications
title_full_unstemmed Privacy-Preserving Data Mining: Methods, Metrics, and Applications
title_sort Privacy-Preserving Data Mining: Methods, Metrics, and Applications
author Mendes, Ricardo
author_facet Mendes, Ricardo
Vilela, João P.
author_role author
author2 Vilela, João P.
author2_role author
dc.contributor.author.fl_str_mv Mendes, Ricardo
Vilela, João P.
dc.subject.por.fl_str_mv privacy
data mining
privacy-preserving data mining
metrics
knowledge extraction
topic privacy
data mining
privacy-preserving data mining
metrics
knowledge extraction
description The collection and analysis of data are continuously growing due to the pervasiveness of computing devices. The analysis of such information is fostering businesses and contributing bene cially to the society in many different elds. However, this storage and ow of possibly sensitive data poses serious privacy concerns. Methods that allow the knowledge extraction from data, while preserving privacy, are known as privacy-preserving data mining (PPDM) techniques. This paper surveys the most relevant PPDM techniques from the literature and the metrics used to evaluate such techniques and presents typical applications of PPDM methods in relevant elds. Furthermore, the current challenges and open issues in PPDM are discussed.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/102068
http://hdl.handle.net/10316/102068
https://doi.org/10.1109/ACCESS.2017.2706947
url http://hdl.handle.net/10316/102068
https://doi.org/10.1109/ACCESS.2017.2706947
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2169-3536
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134085694619648