Autonomous Traffic Engineering using Deep Reinforcement Learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/155377 |
Resumo: | The evolution of communication technologies in the past few decades, has led to a huge increase in the complexity and the overall size of telecommunication networks. This phenomenon has increased the need for innovation in the field of Traffic Engineering (TE), as the already existing solutions are not flexible enough to adapt to these changes. With the appearance of 5G technologies, the urgency to revolutionize the field is higher than ever and the softwarization and virtualization of the infrastructure bring new possibilities for TE optimization, namely the possible use of Artificial Intelligence (AI) based methods for Traffic Management. The recent advances in AI have provided model-free optimization methods with algorithms like Deep Reinforcement Learning (DRL) that can be used to optimize traffic distributions in complex and hard to model Network scenarios. This thesis aims to provide a DRL-based solution for TE where an agent is capable of making routing decisions based on the current state of the network, with the goal of balancing the load between the network paths. A DRL agent is developed and trained in two different scenarios where the traffic that already exists in the network is generated randomly or according to a systematic pattern. A simulation environment was developed to train and evaluate the DRL agent. |
id |
RCAP_14a05210381f327a1c9daffede74ed76 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/155377 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Autonomous Traffic Engineering using Deep Reinforcement LearningTraffic EngineeringDeep Reinforcement LearningLoad BalancingDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaThe evolution of communication technologies in the past few decades, has led to a huge increase in the complexity and the overall size of telecommunication networks. This phenomenon has increased the need for innovation in the field of Traffic Engineering (TE), as the already existing solutions are not flexible enough to adapt to these changes. With the appearance of 5G technologies, the urgency to revolutionize the field is higher than ever and the softwarization and virtualization of the infrastructure bring new possibilities for TE optimization, namely the possible use of Artificial Intelligence (AI) based methods for Traffic Management. The recent advances in AI have provided model-free optimization methods with algorithms like Deep Reinforcement Learning (DRL) that can be used to optimize traffic distributions in complex and hard to model Network scenarios. This thesis aims to provide a DRL-based solution for TE where an agent is capable of making routing decisions based on the current state of the network, with the goal of balancing the load between the network paths. A DRL agent is developed and trained in two different scenarios where the traffic that already exists in the network is generated randomly or according to a systematic pattern. A simulation environment was developed to train and evaluate the DRL agent.A evolução das tecnologias de comunicação nas útlimas décadas, tem dado origem a um grande aumento na complexidade e no tamanho das redes de telecomunicações. Este fenómeno tem aumentado a necessidade de inovação na área de Traffic Engineering (TE), visto que as soluções já existentes não são flexíveis o suficiente para se adaptarem a estas mudanças. Com a aproximação das tecnologias 5G, a urgência para revolucionar a área está cada vez maior e a softwarização e a virtualização das infraestruturas trazem novas possibilidades para otimizações de TE, nomeadamente o possível uso de métodos baseados em Inteligência Artificial (IA) para gerir o tráfego da rede. Os avanços recentes de IA têm criado métodos de otimização independentes de modelos (model-free), como Deep Reinforcement Learning (DRL) que pode ser usado para otimizar a distribuição de tráfego em cenários de redes complexas e difíceis de modelar. Esta dissertação tem como objetivo implementar uma solução à base de DRL, em que é desenhado um agente que é capaz de tomar decisões de encaminhamento, com o objetivo de gerir o tráfego pelos caminhos da rede. Um agente DRL é treinado em dois cenários diferentes onde o tráfego já existente na rede é gerado aleatóriamente ou de acordo com um padrão pré-definido. Foi criado um ambiente para treinar e para avaliar o agente DRL.Amaral, PedroRUNLotfi, Afshin Nakhost2023-07-17T15:40:28Z2022-122022-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/155377enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:37:56Zoai:run.unl.pt:10362/155377Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:56:02.452839Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Autonomous Traffic Engineering using Deep Reinforcement Learning |
title |
Autonomous Traffic Engineering using Deep Reinforcement Learning |
spellingShingle |
Autonomous Traffic Engineering using Deep Reinforcement Learning Lotfi, Afshin Nakhost Traffic Engineering Deep Reinforcement Learning Load Balancing Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Autonomous Traffic Engineering using Deep Reinforcement Learning |
title_full |
Autonomous Traffic Engineering using Deep Reinforcement Learning |
title_fullStr |
Autonomous Traffic Engineering using Deep Reinforcement Learning |
title_full_unstemmed |
Autonomous Traffic Engineering using Deep Reinforcement Learning |
title_sort |
Autonomous Traffic Engineering using Deep Reinforcement Learning |
author |
Lotfi, Afshin Nakhost |
author_facet |
Lotfi, Afshin Nakhost |
author_role |
author |
dc.contributor.none.fl_str_mv |
Amaral, Pedro RUN |
dc.contributor.author.fl_str_mv |
Lotfi, Afshin Nakhost |
dc.subject.por.fl_str_mv |
Traffic Engineering Deep Reinforcement Learning Load Balancing Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Traffic Engineering Deep Reinforcement Learning Load Balancing Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
The evolution of communication technologies in the past few decades, has led to a huge increase in the complexity and the overall size of telecommunication networks. This phenomenon has increased the need for innovation in the field of Traffic Engineering (TE), as the already existing solutions are not flexible enough to adapt to these changes. With the appearance of 5G technologies, the urgency to revolutionize the field is higher than ever and the softwarization and virtualization of the infrastructure bring new possibilities for TE optimization, namely the possible use of Artificial Intelligence (AI) based methods for Traffic Management. The recent advances in AI have provided model-free optimization methods with algorithms like Deep Reinforcement Learning (DRL) that can be used to optimize traffic distributions in complex and hard to model Network scenarios. This thesis aims to provide a DRL-based solution for TE where an agent is capable of making routing decisions based on the current state of the network, with the goal of balancing the load between the network paths. A DRL agent is developed and trained in two different scenarios where the traffic that already exists in the network is generated randomly or according to a systematic pattern. A simulation environment was developed to train and evaluate the DRL agent. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12 2022-12-01T00:00:00Z 2023-07-17T15:40:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/155377 |
url |
http://hdl.handle.net/10362/155377 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138146647015424 |