Remote biometrical monitoring system via IoT

Detalhes bibliográficos
Autor(a) principal: Pedro de Castro Albergaria
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/132783
Resumo: Internet of Things (IoT) systems are experiencing rapid growth due to their applicability in several domains, from smart cities to healthcare among many. In these systems, devices communicate with each other, or with infrastructure, resorting to machine-to-machine (M2M) communications. Since many of these devices are simple systems, with weak processing capacity, lightweight M2M protocols were developed such as Constrained Application Protocol (CoAP) and Messaging Queue Telemetry Transport (MQTT) as well as frameworks to support M2M communications. As expected, there are challenges when developing M2M and IoT applications: interoperability, scalability, standardisation, among others. Therefore, several M2M standards were created to overcome these issues, with oneM2M being one of them. Nowadays, there are multiple devices available that have an embedded WiFi interface, thus, when inserted in an IoT system, these devices do not need a gateway (GW) to access the Internet since WiFi is one of the most common technologies at Internet boundary. This is a key feature because it increases the system's pervasiveness as well as the overall cost of the system. Additionally, these devices, such as the ESP32 module, offer sleep modes that allow exploiting the power management features by the IEEE 802.11 standard. Healthcare institutions always strive to provide the best services concerning the reliability, safety and comfort of the patients. To do so, IoT technologies have been embraced and developed in recent years to improve these services. The work proposed in this dissertation is an end-to-end continuous monitoring system via IoT capable of monitoring a patient's vital signs and displaying them to the medical personnel. Moreover, the system can be applied to a wide range of application scenarios from emergency wards and home environment to sports training and competition. The system has two major components, a low-cost and low-power WiFi-enabled wearable device for the user and, at the upper end, a monitoring interface for the medical personnel. The wearable is composed by a MAX30100/MAX30102 PhotoPletysmoGraphy (PPG) sensor to measure the heart rate and oxygen saturation levels, an ESP32 with a built-in WiFi antenna to process and send the sensor data to the monitoring system and, finally, a Lithium Polymer (LiPo) battery to power-up the previous two components. At the upper end, the monitoring interface is composed of a time-series database to store all the data, a graphics visualisation software of patient's vital signs and a Graphic User Interface (GUI) serving as a control panel. Additionally, the system relies on the oneM2M standard for the interoperability concerning the architecture and follows a publish-subscribe communication model due to its efficiency in sensing and remote monitoring. Furthermore, the goal of this dissertation is to develop a low-cost and energy-efficient monitoring system while not compromising the reliability and robustness of traditional machines and systems.
id RCAP_14a490d561925fa2b360cd2cfdacec6f
oai_identifier_str oai:repositorio-aberto.up.pt:10216/132783
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Remote biometrical monitoring system via IoTEngenharia electrotécnica, electrónica e informáticaElectrical engineering, Electronic engineering, Information engineeringInternet of Things (IoT) systems are experiencing rapid growth due to their applicability in several domains, from smart cities to healthcare among many. In these systems, devices communicate with each other, or with infrastructure, resorting to machine-to-machine (M2M) communications. Since many of these devices are simple systems, with weak processing capacity, lightweight M2M protocols were developed such as Constrained Application Protocol (CoAP) and Messaging Queue Telemetry Transport (MQTT) as well as frameworks to support M2M communications. As expected, there are challenges when developing M2M and IoT applications: interoperability, scalability, standardisation, among others. Therefore, several M2M standards were created to overcome these issues, with oneM2M being one of them. Nowadays, there are multiple devices available that have an embedded WiFi interface, thus, when inserted in an IoT system, these devices do not need a gateway (GW) to access the Internet since WiFi is one of the most common technologies at Internet boundary. This is a key feature because it increases the system's pervasiveness as well as the overall cost of the system. Additionally, these devices, such as the ESP32 module, offer sleep modes that allow exploiting the power management features by the IEEE 802.11 standard. Healthcare institutions always strive to provide the best services concerning the reliability, safety and comfort of the patients. To do so, IoT technologies have been embraced and developed in recent years to improve these services. The work proposed in this dissertation is an end-to-end continuous monitoring system via IoT capable of monitoring a patient's vital signs and displaying them to the medical personnel. Moreover, the system can be applied to a wide range of application scenarios from emergency wards and home environment to sports training and competition. The system has two major components, a low-cost and low-power WiFi-enabled wearable device for the user and, at the upper end, a monitoring interface for the medical personnel. The wearable is composed by a MAX30100/MAX30102 PhotoPletysmoGraphy (PPG) sensor to measure the heart rate and oxygen saturation levels, an ESP32 with a built-in WiFi antenna to process and send the sensor data to the monitoring system and, finally, a Lithium Polymer (LiPo) battery to power-up the previous two components. At the upper end, the monitoring interface is composed of a time-series database to store all the data, a graphics visualisation software of patient's vital signs and a Graphic User Interface (GUI) serving as a control panel. Additionally, the system relies on the oneM2M standard for the interoperability concerning the architecture and follows a publish-subscribe communication model due to its efficiency in sensing and remote monitoring. Furthermore, the goal of this dissertation is to develop a low-cost and energy-efficient monitoring system while not compromising the reliability and robustness of traditional machines and systems.2020-07-232020-07-23T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/10216/132783TID:202594041engPedro de Castro Albergariainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:14:17Zoai:repositorio-aberto.up.pt:10216/132783Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:18:42.391830Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Remote biometrical monitoring system via IoT
title Remote biometrical monitoring system via IoT
spellingShingle Remote biometrical monitoring system via IoT
Pedro de Castro Albergaria
Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
title_short Remote biometrical monitoring system via IoT
title_full Remote biometrical monitoring system via IoT
title_fullStr Remote biometrical monitoring system via IoT
title_full_unstemmed Remote biometrical monitoring system via IoT
title_sort Remote biometrical monitoring system via IoT
author Pedro de Castro Albergaria
author_facet Pedro de Castro Albergaria
author_role author
dc.contributor.author.fl_str_mv Pedro de Castro Albergaria
dc.subject.por.fl_str_mv Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
topic Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
description Internet of Things (IoT) systems are experiencing rapid growth due to their applicability in several domains, from smart cities to healthcare among many. In these systems, devices communicate with each other, or with infrastructure, resorting to machine-to-machine (M2M) communications. Since many of these devices are simple systems, with weak processing capacity, lightweight M2M protocols were developed such as Constrained Application Protocol (CoAP) and Messaging Queue Telemetry Transport (MQTT) as well as frameworks to support M2M communications. As expected, there are challenges when developing M2M and IoT applications: interoperability, scalability, standardisation, among others. Therefore, several M2M standards were created to overcome these issues, with oneM2M being one of them. Nowadays, there are multiple devices available that have an embedded WiFi interface, thus, when inserted in an IoT system, these devices do not need a gateway (GW) to access the Internet since WiFi is one of the most common technologies at Internet boundary. This is a key feature because it increases the system's pervasiveness as well as the overall cost of the system. Additionally, these devices, such as the ESP32 module, offer sleep modes that allow exploiting the power management features by the IEEE 802.11 standard. Healthcare institutions always strive to provide the best services concerning the reliability, safety and comfort of the patients. To do so, IoT technologies have been embraced and developed in recent years to improve these services. The work proposed in this dissertation is an end-to-end continuous monitoring system via IoT capable of monitoring a patient's vital signs and displaying them to the medical personnel. Moreover, the system can be applied to a wide range of application scenarios from emergency wards and home environment to sports training and competition. The system has two major components, a low-cost and low-power WiFi-enabled wearable device for the user and, at the upper end, a monitoring interface for the medical personnel. The wearable is composed by a MAX30100/MAX30102 PhotoPletysmoGraphy (PPG) sensor to measure the heart rate and oxygen saturation levels, an ESP32 with a built-in WiFi antenna to process and send the sensor data to the monitoring system and, finally, a Lithium Polymer (LiPo) battery to power-up the previous two components. At the upper end, the monitoring interface is composed of a time-series database to store all the data, a graphics visualisation software of patient's vital signs and a Graphic User Interface (GUI) serving as a control panel. Additionally, the system relies on the oneM2M standard for the interoperability concerning the architecture and follows a publish-subscribe communication model due to its efficiency in sensing and remote monitoring. Furthermore, the goal of this dissertation is to develop a low-cost and energy-efficient monitoring system while not compromising the reliability and robustness of traditional machines and systems.
publishDate 2020
dc.date.none.fl_str_mv 2020-07-23
2020-07-23T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/132783
TID:202594041
url https://hdl.handle.net/10216/132783
identifier_str_mv TID:202594041
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136105572859905