Morphological aspects and distribution of granules composed of deproteinized bovine bone or human dentin into a putty mixture: an in vitro study

Detalhes bibliográficos
Autor(a) principal: Pimentel, Inês
Data de Publicação: 2023
Outros Autores: Henriques, Bruno, Silva, Filipe, Carvalho, Oscar, Teughels, Wim, Özcan, Mutlu, Souza, Júlio C. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.14/43452
Resumo: Objective: The main aim of this study was to evaluate the morphological aspects and distribution of granules composed of deproteinized bovine bone mineral (DBBM) and human dentin-derived bone graft (HDBG) into a putty consistency mixture. Materials and methods: DBBM or HDBG were mixed with an alginate-based hydrogel at two different granule/hydrogel ratio (1:1 and 1:3) and divided into four test groups while two control groups were composed of DBBM or HDBG free of hydrogel. Groups of specimens were cross-sectioned for morphological evaluation by scanning electron microscopy (SEM) at backscattered electrons mode. Details on the dimensions and pores’ size of DBBM and HDBG were evaluated after mixing different amounts of particles and alginate-based hydrogels. Results: Microscopic analyses revealed a size of DBBM granules ranging from 750 up to 1600 μm while HDBG particles showed particle size ranging from 375 up to 1500 μm. No statistical differences were identified regarding the size of granules (p > 0.5). The mean values of pores’ size of DBBM particles were noticed at around 400 μm while HDBG particles revealed micro-scale pores of around 1–3 μm promoted by the dentin tubules (p < 0.05). The lowest distance between particles was at 125 μm for HDBG and 250 μm for DBBM when the particle content was increased. On decreasing the particles’ content, the distance between particles was larger for DBBM (~ 1000 μm) and HDBG (~ 1100 μm). In fact, statistically significant differences were found when the content of granules increased (p < 0.05). Conclusions: The increased content of bioactive ceramic granules in a putty consistency mixture with hydrogel decreased the space among granules that can promote a high ceramic density and stimulate the bone growth over the healing process. Macro-scale pores on bovine bone mineral granules stimulate the formation of blood vessels and cell migration while the micro-scale pores of dentin-derived granules are proper for the adsorption of proteins and growth of osteogenic cells on the bone healing process. Clinical significance: A high amount of bioactive ceramic granules should be considered when mixing with hydrogels as a putty material since that result in small spaces among granules maintaining the bone volume over the bone healing process. Deproteinized bovine bone mineral granules have macro-scale pores providing an enhanced angiogenesis while dentin-derived granules possess only micro-scale pores for the adsorption of proteins and proliferation of osteogenic cells on the bone healing process. Further studies should evaluate the combination of different bioactive ceramic materials for enhanced bone healing.
id RCAP_14a690969e1a93418ffb4c9c5aea83c8
oai_identifier_str oai:repositorio.ucp.pt:10400.14/43452
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Morphological aspects and distribution of granules composed of deproteinized bovine bone or human dentin into a putty mixture: an in vitro studyBone healingDBBMDentin graftDeproteinized bovine boneObjective: The main aim of this study was to evaluate the morphological aspects and distribution of granules composed of deproteinized bovine bone mineral (DBBM) and human dentin-derived bone graft (HDBG) into a putty consistency mixture. Materials and methods: DBBM or HDBG were mixed with an alginate-based hydrogel at two different granule/hydrogel ratio (1:1 and 1:3) and divided into four test groups while two control groups were composed of DBBM or HDBG free of hydrogel. Groups of specimens were cross-sectioned for morphological evaluation by scanning electron microscopy (SEM) at backscattered electrons mode. Details on the dimensions and pores’ size of DBBM and HDBG were evaluated after mixing different amounts of particles and alginate-based hydrogels. Results: Microscopic analyses revealed a size of DBBM granules ranging from 750 up to 1600 μm while HDBG particles showed particle size ranging from 375 up to 1500 μm. No statistical differences were identified regarding the size of granules (p > 0.5). The mean values of pores’ size of DBBM particles were noticed at around 400 μm while HDBG particles revealed micro-scale pores of around 1–3 μm promoted by the dentin tubules (p < 0.05). The lowest distance between particles was at 125 μm for HDBG and 250 μm for DBBM when the particle content was increased. On decreasing the particles’ content, the distance between particles was larger for DBBM (~ 1000 μm) and HDBG (~ 1100 μm). In fact, statistically significant differences were found when the content of granules increased (p < 0.05). Conclusions: The increased content of bioactive ceramic granules in a putty consistency mixture with hydrogel decreased the space among granules that can promote a high ceramic density and stimulate the bone growth over the healing process. Macro-scale pores on bovine bone mineral granules stimulate the formation of blood vessels and cell migration while the micro-scale pores of dentin-derived granules are proper for the adsorption of proteins and growth of osteogenic cells on the bone healing process. Clinical significance: A high amount of bioactive ceramic granules should be considered when mixing with hydrogels as a putty material since that result in small spaces among granules maintaining the bone volume over the bone healing process. Deproteinized bovine bone mineral granules have macro-scale pores providing an enhanced angiogenesis while dentin-derived granules possess only micro-scale pores for the adsorption of proteins and proliferation of osteogenic cells on the bone healing process. Further studies should evaluate the combination of different bioactive ceramic materials for enhanced bone healing.Veritati - Repositório Institucional da Universidade Católica PortuguesaPimentel, InêsHenriques, BrunoSilva, FilipeCarvalho, OscarTeughels, WimÖzcan, MutluSouza, Júlio C. M.2024-01-03T11:47:38Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/43452eng1746-160X10.1186/s13005-023-00398-785179931162info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-09T01:37:23Zoai:repositorio.ucp.pt:10400.14/43452Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:30:51.496048Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Morphological aspects and distribution of granules composed of deproteinized bovine bone or human dentin into a putty mixture: an in vitro study
title Morphological aspects and distribution of granules composed of deproteinized bovine bone or human dentin into a putty mixture: an in vitro study
spellingShingle Morphological aspects and distribution of granules composed of deproteinized bovine bone or human dentin into a putty mixture: an in vitro study
Pimentel, Inês
Bone healing
DBBM
Dentin graft
Deproteinized bovine bone
title_short Morphological aspects and distribution of granules composed of deproteinized bovine bone or human dentin into a putty mixture: an in vitro study
title_full Morphological aspects and distribution of granules composed of deproteinized bovine bone or human dentin into a putty mixture: an in vitro study
title_fullStr Morphological aspects and distribution of granules composed of deproteinized bovine bone or human dentin into a putty mixture: an in vitro study
title_full_unstemmed Morphological aspects and distribution of granules composed of deproteinized bovine bone or human dentin into a putty mixture: an in vitro study
title_sort Morphological aspects and distribution of granules composed of deproteinized bovine bone or human dentin into a putty mixture: an in vitro study
author Pimentel, Inês
author_facet Pimentel, Inês
Henriques, Bruno
Silva, Filipe
Carvalho, Oscar
Teughels, Wim
Özcan, Mutlu
Souza, Júlio C. M.
author_role author
author2 Henriques, Bruno
Silva, Filipe
Carvalho, Oscar
Teughels, Wim
Özcan, Mutlu
Souza, Júlio C. M.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Veritati - Repositório Institucional da Universidade Católica Portuguesa
dc.contributor.author.fl_str_mv Pimentel, Inês
Henriques, Bruno
Silva, Filipe
Carvalho, Oscar
Teughels, Wim
Özcan, Mutlu
Souza, Júlio C. M.
dc.subject.por.fl_str_mv Bone healing
DBBM
Dentin graft
Deproteinized bovine bone
topic Bone healing
DBBM
Dentin graft
Deproteinized bovine bone
description Objective: The main aim of this study was to evaluate the morphological aspects and distribution of granules composed of deproteinized bovine bone mineral (DBBM) and human dentin-derived bone graft (HDBG) into a putty consistency mixture. Materials and methods: DBBM or HDBG were mixed with an alginate-based hydrogel at two different granule/hydrogel ratio (1:1 and 1:3) and divided into four test groups while two control groups were composed of DBBM or HDBG free of hydrogel. Groups of specimens were cross-sectioned for morphological evaluation by scanning electron microscopy (SEM) at backscattered electrons mode. Details on the dimensions and pores’ size of DBBM and HDBG were evaluated after mixing different amounts of particles and alginate-based hydrogels. Results: Microscopic analyses revealed a size of DBBM granules ranging from 750 up to 1600 μm while HDBG particles showed particle size ranging from 375 up to 1500 μm. No statistical differences were identified regarding the size of granules (p > 0.5). The mean values of pores’ size of DBBM particles were noticed at around 400 μm while HDBG particles revealed micro-scale pores of around 1–3 μm promoted by the dentin tubules (p < 0.05). The lowest distance between particles was at 125 μm for HDBG and 250 μm for DBBM when the particle content was increased. On decreasing the particles’ content, the distance between particles was larger for DBBM (~ 1000 μm) and HDBG (~ 1100 μm). In fact, statistically significant differences were found when the content of granules increased (p < 0.05). Conclusions: The increased content of bioactive ceramic granules in a putty consistency mixture with hydrogel decreased the space among granules that can promote a high ceramic density and stimulate the bone growth over the healing process. Macro-scale pores on bovine bone mineral granules stimulate the formation of blood vessels and cell migration while the micro-scale pores of dentin-derived granules are proper for the adsorption of proteins and growth of osteogenic cells on the bone healing process. Clinical significance: A high amount of bioactive ceramic granules should be considered when mixing with hydrogels as a putty material since that result in small spaces among granules maintaining the bone volume over the bone healing process. Deproteinized bovine bone mineral granules have macro-scale pores providing an enhanced angiogenesis while dentin-derived granules possess only micro-scale pores for the adsorption of proteins and proliferation of osteogenic cells on the bone healing process. Further studies should evaluate the combination of different bioactive ceramic materials for enhanced bone healing.
publishDate 2023
dc.date.none.fl_str_mv 2023
2023-01-01T00:00:00Z
2024-01-03T11:47:38Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/43452
url http://hdl.handle.net/10400.14/43452
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1746-160X
10.1186/s13005-023-00398-7
85179931162
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136790406234112