The calcium/phosphorus homeostasis in chronic kidney disease: From clinical epidemiology to pathophysiology

Detalhes bibliográficos
Autor(a) principal: Pires, A.
Data de Publicação: 2017
Outros Autores: Sobrinho, L., Ferreira, H.G.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://doi.org/10.20344/amp.8040
Resumo: Export Date: 19 October 2017 CODEN: AMPOD Correspondence Address: Pires, A.; Serviço de Nefrologia, Hospital Fernando da FonsecaPortugal; email: ana.l.mariquitos@gmail.com References: Pires, A., Adragao, T., Pais, M.J., Vinhas, J., Ferreira, H.G., Inferring disease mechanisms from epidemiological data in chronic kidney disease: Calcium and phosphorus metabolism (2009) Nephron Clin Pract, 112, pp. c137-c147; Manjunath, G., Sarnak, M.J., Levey, A.S., Prediction equations to estimate glomerular filtration rate: An update (2001) Curr Opin Nephrol Hypertens, 10, pp. 785-792; Cannata-Andía, J.B., Martin, K.J., The challenge of controlling phosphorus in chronic kidney disease (2016) Nephrol Dial Transplant, 31, pp. 541-547; Ben-Dov, I.Z., Galitzer, H., Lavi-Moshayoff, V., Goetz, R., Kuro, M., Mohammadi, M., The parathyroid is a target organ for FGF-23 in rats (2007) J Clin Invest, 117, pp. 4003-4008; Brown, E.M., Juppner, H., Parathyroid hormone: Synthesis, secretion and action (2006) Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, pp. 90-99. , Favus MJ, editor, 6th ed. Washington: American Society for Bone and Mineral Research; Felsenfeld, A.J., Levine, B.S., Rodriguez, M., Pathophysiology of calcium, phosphorus and magnesium dysregulation in chronic kidney disease (2015) Semin Dial, 28, pp. 564-577; Habener, J.F., Rosenblatt, M., Potts, J.T., Parathyroid hormone: Biochemical aspects of biosynthesis, secretion, action and metabolism (1984) Physiol Rev, 64, pp. 985-1053; Brown, E.M., Four parameter model of the sigmoidal relationship between parathyroid hormone release and extracellular Ca concentration in normal and abnormal parathyroid tissue (1983) J Clin Endocrinol Metab, 56, pp. 572-581; Milsum, J.H., (1966) Biological Control Systems Analysis, , Columbus: McGraw-Hill Inc; Guyton, A.C., Jones, C.E., Coleman, T.G., (1973) Circulatory Physiology: Cardiac Output and Its Regulation, , Philadelphia: WB Saunders Co; Spiegel, M.R., Stephens, L.J., (1961) Schaum’s Outline of Statistics, pp. 436-437. , 3rd ed. Columbus: McGraw-Hill Inc; K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification and stratification (2002) Am J Kidney Dis, 39, p. S1; Parfitt, A.M., Calcium homeostasis (1993) Physiology and Pharmacology of Bone, pp. 1-66. , Mundy GR, Martin TJ, editors, Berlin: Springer-Verlag; Bergwitz, C., Jüppner, H., Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23 (2010) Annu Rev Med, 61, pp. 91-104; Berndt, T., Kumar, R., Clinical disturbances of phosphate homeostasis (2008) Seldin and Giebisch´s the Kidney Physiology and Pathology, pp. 1989-2006. , Alpern R, Hebert S, editors, 4th ed. Amsterdam: Elsevier; Mundy, G.R., Hormonal factors which regulate bone (1993) Physiology and Pharmacology of Bone, pp. 215-248. , Mundy GR, Martin TJ, editors, Berlin: Springer-Verlag; Tatsumi, S., Miyagawa, A., Kaneko, I., Shiozaki, Y., Segawa, H., Miyamoto, K., Regulation of renal phosphate handling: Inter-organ communication in health and disease (2016) J Bone Miner Metab, 34, pp. 1-10; Blaine, J., Chonchol, M., Levi, M., Renal control of calcium, phosphate, and magnesium homeostasis (2015) Clin J am Soc Nephrol, 10, pp. 1257-1272; Drüeke, T.B., Massy, Z.A., Changing bone patterns with progression of chronic kidney disease (2016) Kidney Int, 89, pp. 289-302; Ritter, C.S., Slatopolsky, E., Phosphate toxicity in CKD: The killer among Us (2016) Clin J am Soc Nephrol, 11, pp. 1088-1100; Al-Aly, Z., Qazi, R.A., González, E.A., Zeringue, A., Martin, K.J., Changes in serum 25-hydroxyvitamin D and plasma intact PTH levels following treatment with ergocalciferol in patients with CKD (2007) Am J Kidney Dis, 50, pp. 59-68; Kandula, P., Dobre, M., Schold, J.D., Schreiber, M.J., Jr., Mehrotra, R., Navaneethan, S.D., Vitamin D supplementation in chronic kidney disease: A systematic review and meta-analysis of observational studies and randomized controlled trials (2011) Clin J am Soc Nephrol, 6, pp. 50-62; Slatopolsky, E., Lopez-Hilker, S., Delmez, J., Dusso, A., Brown, A., Martin, K.J., The parathyroid-calcitriol axis in health and chronic renal failure (1990) Kidney Int Suppl, 29, pp. S41-S47; Koenig, K.G., Lindberg, J.S., Zerwekh, J.E., Padalino, P.K., Cushner, H.M., Copley, J.B., Free and total 1,25-dihydroxyvitamin D levels in subjects with renal disease (1992) Kidney Int, 4, pp. 161-165; Prince, R.L., Hutchison, B.G., Kent, J.C., Kent, G.N., Retallack, R.W., Calcitriol deficiency with retained synthetic reserve in chronic renal failure (1988) Kidney Int, 33, pp. 722-728; Malluche, H.H., Werner, E., Ritz, E., Intestinal absorption of calcium and whole-body calcium retention in incipient and advanced renal failure (1978) Miner Electrolyte Metab, 1, pp. 263-270; St-Arnaud, R., Demay, M.B., Vitamin D biology (2003) Pediatric Bone: Biology and Diseases, pp. 193-216. , Glorieux FH, Pettifor JM, Juppner H, editors, San Diego: Academic Press; Llach, F., Massry, S.G., On the mechanism of secondary hyperparathyroidism in moderate renal insufficiency (1985) J Clin Endocrinol Metab, 61, pp. 601-606; Delmez, J.A., Slatopolsky, E., Hyperphosphatemia: Its consequences and treatment in patients with chronic renal disease (1992) Am J Kidney Dis, 19, pp. 303-317; Isakova, T., Wahl, P., Vargas, G.S., Gutiérrez, O.M., Scialla, J., Xie, H., Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease (2011) Kidney Int, 79, pp. 1370-1378; Evenepoel, P., Meijers, B., Viaene, L., Bammens, B., Claes, K., Kuypers, D., Fibroblast growth factor-23 in early chronic kidney disease: Additional support in favor of a phosphate-centric paradigm for the pathogenesis of secondary hyperparathyroidism (2010) Clin J am Soc Nephrol, 5; Vervloet, M.G., Massy, Z.A., Brandenburg, V.M., Mazzaferro, S., Cozzolino, M., Ureña-Torres, P., Bone: A new endocrine organ at the heart of chronic kidney disease and mineral and bone disorders (2014) Lancet Diabetes Endocrinol, 2, pp. 427-436; Gutiérrez, O.M., Fibroblast growth factor 23 and disordered vitamin D metabolism in chronic kidney disease: Updating the “trade-off” hypothesis (2010) Clin J am Soc Nephrol, 5, pp. 1710-1716; Gutierrez, O., Isakova, T., Rhee, E., Shah, A., Holmes, J., Collerone, G., Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease (2005) J am Soc Nephrol, 16, pp. 2205-2215; Slatopolsky, E., Delmez, J.A., Pathogenesis of secondary hyperparathyroidism (1996) Nephrol Dial Transplant, 11, pp. 130-135; Craver, L., Marco, M.P., Martínez, I., Rue, M., Borràs, M., Martín, M.L., Mineral metabolism parameters throughout chronic kidney disease stages 1-5--achievement of K/DOQI target ranges (2007) Nephrol Dial Transplant, 22, pp. 1171-1176; Evenepoel, P., Rodriguez, M., Ketteler, M., Laboratory abnormalities in CKD-MBD: Markers, predictors, or mediators of disease? (2014) Semin Nephrol, 34, pp. 151-163; Bellasi, A., Pro: Should phosphate binders be used in chronic kidney disease stage 3-4? (2016) Nephrol Dial Transplant, 31, pp. 184-188; Dusso, A., González, E.A., Martin, K.J., Vitamin D in chronic kidney disease (2011) Best Pract Res Clin Endocrinol Metab, 25, pp. 647-655; Quarles, L.D., Role of FGF-23 in vitamin D and phosphate metabolism: Implications in chronic kidney disease (2012) Exp Cell Res, 318, pp. 1040-1048; Brown, A., Dusso, A., Slatopolsky, E., Vitamin, D., (2008) Seldin and Giebisch´s the Kidney Physiology and Pathology, pp. 1803-1849. , Alpern R, Hebert S, editors, 4th ed. Amsterdam: Elsevier; Fraser, W.D., Hyperparathyroidism (2009) Lancet, 374, pp. 145-158; Dhayat, N.A., Ackermann, D., Pruijm, M., Ponte, B., Ehret, G., Guessous, I., Fibroblast growth factor 23 and markers of mineral metabolism in individuals with preserved renal function (2016) Kidney Int, 90, pp. 648-657; Wolf, M., Mineral (Mal)adaptation to kidney disease (2015) Clin J am Soc Nephrol, 10, pp. 1875-1885; Levin, A., Bakris, G.L., Molitch, M., Smulders, M., Tian, J., Williams, L.A., Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: Results of the study to evaluate early kidney disease (2007) Kidney Int, 71, pp. 31-38; Perwad, F., Zhang, M.Y., Tenenhouse, H.S., Portale, A.A., Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1alpha-hydroxylase expression in vitro (2007) Am J Physiol Renal Physiol, 293, pp. F1577-F1583; Liu, S., Quarles, L.D., How FGF-23 works (2007) J am Soc Nephrol, 18, pp. 1637-1647; Shimada, T., Hasegawa, H., Yamazaki, Y., Muto, T., Hino, R., Takeuchi, Y., FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis (2004) Bone Miner Res, 19, pp. 429-435; Erben, R.G., Andrukhova, O., FGF23-Klotho signaling axis in the kidney (2017) Bone; Ix, J.H., Shlipak, M.G., Wassel, C.L., Whooley, M.A., Fibroblast growth factor-23 and early decrements in kidney function: The heart and soul Study (2010) Nephrol Dial Transplant, 25, pp. 993-997; Kovesdy, C.P., Quarles, L.D., FGF23 from bench to bedside (2016) Am J Physiol Renal, 310, pp. F1168-F1174; Kuro, M., Moe, O.W., FGF23-αKlotho as a paradigm for a kidney-bone network (2017) Bone
id RCAP_15006e61acce03d3e59de8e81f3e35ac
oai_identifier_str oai:run.unl.pt:10362/24380
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str
spelling The calcium/phosphorus homeostasis in chronic kidney disease: From clinical epidemiology to pathophysiologyCalciumChronicHomeostasisHyperparathyroidismKidney FailurePhosphorusExport Date: 19 October 2017 CODEN: AMPOD Correspondence Address: Pires, A.; Serviço de Nefrologia, Hospital Fernando da FonsecaPortugal; email: ana.l.mariquitos@gmail.com References: Pires, A., Adragao, T., Pais, M.J., Vinhas, J., Ferreira, H.G., Inferring disease mechanisms from epidemiological data in chronic kidney disease: Calcium and phosphorus metabolism (2009) Nephron Clin Pract, 112, pp. c137-c147; Manjunath, G., Sarnak, M.J., Levey, A.S., Prediction equations to estimate glomerular filtration rate: An update (2001) Curr Opin Nephrol Hypertens, 10, pp. 785-792; Cannata-Andía, J.B., Martin, K.J., The challenge of controlling phosphorus in chronic kidney disease (2016) Nephrol Dial Transplant, 31, pp. 541-547; Ben-Dov, I.Z., Galitzer, H., Lavi-Moshayoff, V., Goetz, R., Kuro, M., Mohammadi, M., The parathyroid is a target organ for FGF-23 in rats (2007) J Clin Invest, 117, pp. 4003-4008; Brown, E.M., Juppner, H., Parathyroid hormone: Synthesis, secretion and action (2006) Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, pp. 90-99. , Favus MJ, editor, 6th ed. Washington: American Society for Bone and Mineral Research; Felsenfeld, A.J., Levine, B.S., Rodriguez, M., Pathophysiology of calcium, phosphorus and magnesium dysregulation in chronic kidney disease (2015) Semin Dial, 28, pp. 564-577; Habener, J.F., Rosenblatt, M., Potts, J.T., Parathyroid hormone: Biochemical aspects of biosynthesis, secretion, action and metabolism (1984) Physiol Rev, 64, pp. 985-1053; Brown, E.M., Four parameter model of the sigmoidal relationship between parathyroid hormone release and extracellular Ca concentration in normal and abnormal parathyroid tissue (1983) J Clin Endocrinol Metab, 56, pp. 572-581; Milsum, J.H., (1966) Biological Control Systems Analysis, , Columbus: McGraw-Hill Inc; Guyton, A.C., Jones, C.E., Coleman, T.G., (1973) Circulatory Physiology: Cardiac Output and Its Regulation, , Philadelphia: WB Saunders Co; Spiegel, M.R., Stephens, L.J., (1961) Schaum’s Outline of Statistics, pp. 436-437. , 3rd ed. Columbus: McGraw-Hill Inc; K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification and stratification (2002) Am J Kidney Dis, 39, p. S1; Parfitt, A.M., Calcium homeostasis (1993) Physiology and Pharmacology of Bone, pp. 1-66. , Mundy GR, Martin TJ, editors, Berlin: Springer-Verlag; Bergwitz, C., Jüppner, H., Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23 (2010) Annu Rev Med, 61, pp. 91-104; Berndt, T., Kumar, R., Clinical disturbances of phosphate homeostasis (2008) Seldin and Giebisch´s the Kidney Physiology and Pathology, pp. 1989-2006. , Alpern R, Hebert S, editors, 4th ed. Amsterdam: Elsevier; Mundy, G.R., Hormonal factors which regulate bone (1993) Physiology and Pharmacology of Bone, pp. 215-248. , Mundy GR, Martin TJ, editors, Berlin: Springer-Verlag; Tatsumi, S., Miyagawa, A., Kaneko, I., Shiozaki, Y., Segawa, H., Miyamoto, K., Regulation of renal phosphate handling: Inter-organ communication in health and disease (2016) J Bone Miner Metab, 34, pp. 1-10; Blaine, J., Chonchol, M., Levi, M., Renal control of calcium, phosphate, and magnesium homeostasis (2015) Clin J am Soc Nephrol, 10, pp. 1257-1272; Drüeke, T.B., Massy, Z.A., Changing bone patterns with progression of chronic kidney disease (2016) Kidney Int, 89, pp. 289-302; Ritter, C.S., Slatopolsky, E., Phosphate toxicity in CKD: The killer among Us (2016) Clin J am Soc Nephrol, 11, pp. 1088-1100; Al-Aly, Z., Qazi, R.A., González, E.A., Zeringue, A., Martin, K.J., Changes in serum 25-hydroxyvitamin D and plasma intact PTH levels following treatment with ergocalciferol in patients with CKD (2007) Am J Kidney Dis, 50, pp. 59-68; Kandula, P., Dobre, M., Schold, J.D., Schreiber, M.J., Jr., Mehrotra, R., Navaneethan, S.D., Vitamin D supplementation in chronic kidney disease: A systematic review and meta-analysis of observational studies and randomized controlled trials (2011) Clin J am Soc Nephrol, 6, pp. 50-62; Slatopolsky, E., Lopez-Hilker, S., Delmez, J., Dusso, A., Brown, A., Martin, K.J., The parathyroid-calcitriol axis in health and chronic renal failure (1990) Kidney Int Suppl, 29, pp. S41-S47; Koenig, K.G., Lindberg, J.S., Zerwekh, J.E., Padalino, P.K., Cushner, H.M., Copley, J.B., Free and total 1,25-dihydroxyvitamin D levels in subjects with renal disease (1992) Kidney Int, 4, pp. 161-165; Prince, R.L., Hutchison, B.G., Kent, J.C., Kent, G.N., Retallack, R.W., Calcitriol deficiency with retained synthetic reserve in chronic renal failure (1988) Kidney Int, 33, pp. 722-728; Malluche, H.H., Werner, E., Ritz, E., Intestinal absorption of calcium and whole-body calcium retention in incipient and advanced renal failure (1978) Miner Electrolyte Metab, 1, pp. 263-270; St-Arnaud, R., Demay, M.B., Vitamin D biology (2003) Pediatric Bone: Biology and Diseases, pp. 193-216. , Glorieux FH, Pettifor JM, Juppner H, editors, San Diego: Academic Press; Llach, F., Massry, S.G., On the mechanism of secondary hyperparathyroidism in moderate renal insufficiency (1985) J Clin Endocrinol Metab, 61, pp. 601-606; Delmez, J.A., Slatopolsky, E., Hyperphosphatemia: Its consequences and treatment in patients with chronic renal disease (1992) Am J Kidney Dis, 19, pp. 303-317; Isakova, T., Wahl, P., Vargas, G.S., Gutiérrez, O.M., Scialla, J., Xie, H., Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease (2011) Kidney Int, 79, pp. 1370-1378; Evenepoel, P., Meijers, B., Viaene, L., Bammens, B., Claes, K., Kuypers, D., Fibroblast growth factor-23 in early chronic kidney disease: Additional support in favor of a phosphate-centric paradigm for the pathogenesis of secondary hyperparathyroidism (2010) Clin J am Soc Nephrol, 5; Vervloet, M.G., Massy, Z.A., Brandenburg, V.M., Mazzaferro, S., Cozzolino, M., Ureña-Torres, P., Bone: A new endocrine organ at the heart of chronic kidney disease and mineral and bone disorders (2014) Lancet Diabetes Endocrinol, 2, pp. 427-436; Gutiérrez, O.M., Fibroblast growth factor 23 and disordered vitamin D metabolism in chronic kidney disease: Updating the “trade-off” hypothesis (2010) Clin J am Soc Nephrol, 5, pp. 1710-1716; Gutierrez, O., Isakova, T., Rhee, E., Shah, A., Holmes, J., Collerone, G., Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease (2005) J am Soc Nephrol, 16, pp. 2205-2215; Slatopolsky, E., Delmez, J.A., Pathogenesis of secondary hyperparathyroidism (1996) Nephrol Dial Transplant, 11, pp. 130-135; Craver, L., Marco, M.P., Martínez, I., Rue, M., Borràs, M., Martín, M.L., Mineral metabolism parameters throughout chronic kidney disease stages 1-5--achievement of K/DOQI target ranges (2007) Nephrol Dial Transplant, 22, pp. 1171-1176; Evenepoel, P., Rodriguez, M., Ketteler, M., Laboratory abnormalities in CKD-MBD: Markers, predictors, or mediators of disease? (2014) Semin Nephrol, 34, pp. 151-163; Bellasi, A., Pro: Should phosphate binders be used in chronic kidney disease stage 3-4? (2016) Nephrol Dial Transplant, 31, pp. 184-188; Dusso, A., González, E.A., Martin, K.J., Vitamin D in chronic kidney disease (2011) Best Pract Res Clin Endocrinol Metab, 25, pp. 647-655; Quarles, L.D., Role of FGF-23 in vitamin D and phosphate metabolism: Implications in chronic kidney disease (2012) Exp Cell Res, 318, pp. 1040-1048; Brown, A., Dusso, A., Slatopolsky, E., Vitamin, D., (2008) Seldin and Giebisch´s the Kidney Physiology and Pathology, pp. 1803-1849. , Alpern R, Hebert S, editors, 4th ed. Amsterdam: Elsevier; Fraser, W.D., Hyperparathyroidism (2009) Lancet, 374, pp. 145-158; Dhayat, N.A., Ackermann, D., Pruijm, M., Ponte, B., Ehret, G., Guessous, I., Fibroblast growth factor 23 and markers of mineral metabolism in individuals with preserved renal function (2016) Kidney Int, 90, pp. 648-657; Wolf, M., Mineral (Mal)adaptation to kidney disease (2015) Clin J am Soc Nephrol, 10, pp. 1875-1885; Levin, A., Bakris, G.L., Molitch, M., Smulders, M., Tian, J., Williams, L.A., Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: Results of the study to evaluate early kidney disease (2007) Kidney Int, 71, pp. 31-38; Perwad, F., Zhang, M.Y., Tenenhouse, H.S., Portale, A.A., Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1alpha-hydroxylase expression in vitro (2007) Am J Physiol Renal Physiol, 293, pp. F1577-F1583; Liu, S., Quarles, L.D., How FGF-23 works (2007) J am Soc Nephrol, 18, pp. 1637-1647; Shimada, T., Hasegawa, H., Yamazaki, Y., Muto, T., Hino, R., Takeuchi, Y., FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis (2004) Bone Miner Res, 19, pp. 429-435; Erben, R.G., Andrukhova, O., FGF23-Klotho signaling axis in the kidney (2017) Bone; Ix, J.H., Shlipak, M.G., Wassel, C.L., Whooley, M.A., Fibroblast growth factor-23 and early decrements in kidney function: The heart and soul Study (2010) Nephrol Dial Transplant, 25, pp. 993-997; Kovesdy, C.P., Quarles, L.D., FGF23 from bench to bedside (2016) Am J Physiol Renal, 310, pp. F1168-F1174; Kuro, M., Moe, O.W., FGF23-αKlotho as a paradigm for a kidney-bone network (2017) BoneIntroduction: A simple data filtering process together with some basic concepts of control theory applied to electronically stored clinical data were used to identify some of the pathophysiological mechanisms underlying the perturbations of the calcium/phosphorus homeostasis in chronic kidney disease. Material and Methods: Retrospective data (a set per patient of serum single value concentrations of creatinine, calcium, phosphorus, parathormone, 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D) from 2507 patients with stable chronic kidney disease not on renal replacement therapy were studied. The variables were paired and subjected sequentially to a moving average and partioned into frequency classes. The plots were interpreted using the concept of a feedback loop comprising two branches of opposite sign and of set point of the loop. The set point for each pair of variables is displaced in the course of the disease and this displacement indicates which of the two factors involved (the serum concentrations of calcium or parathormone, for example) is primarily affected. Results: This analysis showed that in the course of the development of chronic kidney disease the relationships between the observed variables progressed following a monotonous, a biphasic or a triphasic pattern. Discussion: As chronic kidney disease progresses, calcium/phosphorus metabolism regulation evolves through different phases. Later, there is a progressive loss of the parathyroid gland sensitivity to the control by the serum concentrations of calcium and phosphorus. The sensitivity to the inhibitory action of 1,25-dihydroxyvitamin D decreases monotonously but never releases the gland. Conclusion: The clinical data analysis used permits to illustrate the underlying pathophysiological mechanisms. © Ordem dos Médicos 2017.NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)RUNPires, A.Sobrinho, L.Ferreira, H.G.2017-10-20T22:03:12Z2017-062017-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article8application/pdfhttps://doi.org/10.20344/amp.8040eng0870-399XPURE: 3227884https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021828552&doi=10.20344%2famp.8040&partnerID=40&md5=9882cd066d6ec63b47b59a55258fe6cdhttps://doi.org/10.20344/amp.8040info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-10T15:40:43ZPortal AgregadorONG
dc.title.none.fl_str_mv The calcium/phosphorus homeostasis in chronic kidney disease: From clinical epidemiology to pathophysiology
title The calcium/phosphorus homeostasis in chronic kidney disease: From clinical epidemiology to pathophysiology
spellingShingle The calcium/phosphorus homeostasis in chronic kidney disease: From clinical epidemiology to pathophysiology
Pires, A.
Calcium
Chronic
Homeostasis
Hyperparathyroidism
Kidney Failure
Phosphorus
title_short The calcium/phosphorus homeostasis in chronic kidney disease: From clinical epidemiology to pathophysiology
title_full The calcium/phosphorus homeostasis in chronic kidney disease: From clinical epidemiology to pathophysiology
title_fullStr The calcium/phosphorus homeostasis in chronic kidney disease: From clinical epidemiology to pathophysiology
title_full_unstemmed The calcium/phosphorus homeostasis in chronic kidney disease: From clinical epidemiology to pathophysiology
title_sort The calcium/phosphorus homeostasis in chronic kidney disease: From clinical epidemiology to pathophysiology
author Pires, A.
author_facet Pires, A.
Sobrinho, L.
Ferreira, H.G.
author_role author
author2 Sobrinho, L.
Ferreira, H.G.
author2_role author
author
dc.contributor.none.fl_str_mv NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)
RUN
dc.contributor.author.fl_str_mv Pires, A.
Sobrinho, L.
Ferreira, H.G.
dc.subject.por.fl_str_mv Calcium
Chronic
Homeostasis
Hyperparathyroidism
Kidney Failure
Phosphorus
topic Calcium
Chronic
Homeostasis
Hyperparathyroidism
Kidney Failure
Phosphorus
description Export Date: 19 October 2017 CODEN: AMPOD Correspondence Address: Pires, A.; Serviço de Nefrologia, Hospital Fernando da FonsecaPortugal; email: ana.l.mariquitos@gmail.com References: Pires, A., Adragao, T., Pais, M.J., Vinhas, J., Ferreira, H.G., Inferring disease mechanisms from epidemiological data in chronic kidney disease: Calcium and phosphorus metabolism (2009) Nephron Clin Pract, 112, pp. c137-c147; Manjunath, G., Sarnak, M.J., Levey, A.S., Prediction equations to estimate glomerular filtration rate: An update (2001) Curr Opin Nephrol Hypertens, 10, pp. 785-792; Cannata-Andía, J.B., Martin, K.J., The challenge of controlling phosphorus in chronic kidney disease (2016) Nephrol Dial Transplant, 31, pp. 541-547; Ben-Dov, I.Z., Galitzer, H., Lavi-Moshayoff, V., Goetz, R., Kuro, M., Mohammadi, M., The parathyroid is a target organ for FGF-23 in rats (2007) J Clin Invest, 117, pp. 4003-4008; Brown, E.M., Juppner, H., Parathyroid hormone: Synthesis, secretion and action (2006) Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, pp. 90-99. , Favus MJ, editor, 6th ed. Washington: American Society for Bone and Mineral Research; Felsenfeld, A.J., Levine, B.S., Rodriguez, M., Pathophysiology of calcium, phosphorus and magnesium dysregulation in chronic kidney disease (2015) Semin Dial, 28, pp. 564-577; Habener, J.F., Rosenblatt, M., Potts, J.T., Parathyroid hormone: Biochemical aspects of biosynthesis, secretion, action and metabolism (1984) Physiol Rev, 64, pp. 985-1053; Brown, E.M., Four parameter model of the sigmoidal relationship between parathyroid hormone release and extracellular Ca concentration in normal and abnormal parathyroid tissue (1983) J Clin Endocrinol Metab, 56, pp. 572-581; Milsum, J.H., (1966) Biological Control Systems Analysis, , Columbus: McGraw-Hill Inc; Guyton, A.C., Jones, C.E., Coleman, T.G., (1973) Circulatory Physiology: Cardiac Output and Its Regulation, , Philadelphia: WB Saunders Co; Spiegel, M.R., Stephens, L.J., (1961) Schaum’s Outline of Statistics, pp. 436-437. , 3rd ed. Columbus: McGraw-Hill Inc; K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification and stratification (2002) Am J Kidney Dis, 39, p. S1; Parfitt, A.M., Calcium homeostasis (1993) Physiology and Pharmacology of Bone, pp. 1-66. , Mundy GR, Martin TJ, editors, Berlin: Springer-Verlag; Bergwitz, C., Jüppner, H., Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23 (2010) Annu Rev Med, 61, pp. 91-104; Berndt, T., Kumar, R., Clinical disturbances of phosphate homeostasis (2008) Seldin and Giebisch´s the Kidney Physiology and Pathology, pp. 1989-2006. , Alpern R, Hebert S, editors, 4th ed. Amsterdam: Elsevier; Mundy, G.R., Hormonal factors which regulate bone (1993) Physiology and Pharmacology of Bone, pp. 215-248. , Mundy GR, Martin TJ, editors, Berlin: Springer-Verlag; Tatsumi, S., Miyagawa, A., Kaneko, I., Shiozaki, Y., Segawa, H., Miyamoto, K., Regulation of renal phosphate handling: Inter-organ communication in health and disease (2016) J Bone Miner Metab, 34, pp. 1-10; Blaine, J., Chonchol, M., Levi, M., Renal control of calcium, phosphate, and magnesium homeostasis (2015) Clin J am Soc Nephrol, 10, pp. 1257-1272; Drüeke, T.B., Massy, Z.A., Changing bone patterns with progression of chronic kidney disease (2016) Kidney Int, 89, pp. 289-302; Ritter, C.S., Slatopolsky, E., Phosphate toxicity in CKD: The killer among Us (2016) Clin J am Soc Nephrol, 11, pp. 1088-1100; Al-Aly, Z., Qazi, R.A., González, E.A., Zeringue, A., Martin, K.J., Changes in serum 25-hydroxyvitamin D and plasma intact PTH levels following treatment with ergocalciferol in patients with CKD (2007) Am J Kidney Dis, 50, pp. 59-68; Kandula, P., Dobre, M., Schold, J.D., Schreiber, M.J., Jr., Mehrotra, R., Navaneethan, S.D., Vitamin D supplementation in chronic kidney disease: A systematic review and meta-analysis of observational studies and randomized controlled trials (2011) Clin J am Soc Nephrol, 6, pp. 50-62; Slatopolsky, E., Lopez-Hilker, S., Delmez, J., Dusso, A., Brown, A., Martin, K.J., The parathyroid-calcitriol axis in health and chronic renal failure (1990) Kidney Int Suppl, 29, pp. S41-S47; Koenig, K.G., Lindberg, J.S., Zerwekh, J.E., Padalino, P.K., Cushner, H.M., Copley, J.B., Free and total 1,25-dihydroxyvitamin D levels in subjects with renal disease (1992) Kidney Int, 4, pp. 161-165; Prince, R.L., Hutchison, B.G., Kent, J.C., Kent, G.N., Retallack, R.W., Calcitriol deficiency with retained synthetic reserve in chronic renal failure (1988) Kidney Int, 33, pp. 722-728; Malluche, H.H., Werner, E., Ritz, E., Intestinal absorption of calcium and whole-body calcium retention in incipient and advanced renal failure (1978) Miner Electrolyte Metab, 1, pp. 263-270; St-Arnaud, R., Demay, M.B., Vitamin D biology (2003) Pediatric Bone: Biology and Diseases, pp. 193-216. , Glorieux FH, Pettifor JM, Juppner H, editors, San Diego: Academic Press; Llach, F., Massry, S.G., On the mechanism of secondary hyperparathyroidism in moderate renal insufficiency (1985) J Clin Endocrinol Metab, 61, pp. 601-606; Delmez, J.A., Slatopolsky, E., Hyperphosphatemia: Its consequences and treatment in patients with chronic renal disease (1992) Am J Kidney Dis, 19, pp. 303-317; Isakova, T., Wahl, P., Vargas, G.S., Gutiérrez, O.M., Scialla, J., Xie, H., Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease (2011) Kidney Int, 79, pp. 1370-1378; Evenepoel, P., Meijers, B., Viaene, L., Bammens, B., Claes, K., Kuypers, D., Fibroblast growth factor-23 in early chronic kidney disease: Additional support in favor of a phosphate-centric paradigm for the pathogenesis of secondary hyperparathyroidism (2010) Clin J am Soc Nephrol, 5; Vervloet, M.G., Massy, Z.A., Brandenburg, V.M., Mazzaferro, S., Cozzolino, M., Ureña-Torres, P., Bone: A new endocrine organ at the heart of chronic kidney disease and mineral and bone disorders (2014) Lancet Diabetes Endocrinol, 2, pp. 427-436; Gutiérrez, O.M., Fibroblast growth factor 23 and disordered vitamin D metabolism in chronic kidney disease: Updating the “trade-off” hypothesis (2010) Clin J am Soc Nephrol, 5, pp. 1710-1716; Gutierrez, O., Isakova, T., Rhee, E., Shah, A., Holmes, J., Collerone, G., Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease (2005) J am Soc Nephrol, 16, pp. 2205-2215; Slatopolsky, E., Delmez, J.A., Pathogenesis of secondary hyperparathyroidism (1996) Nephrol Dial Transplant, 11, pp. 130-135; Craver, L., Marco, M.P., Martínez, I., Rue, M., Borràs, M., Martín, M.L., Mineral metabolism parameters throughout chronic kidney disease stages 1-5--achievement of K/DOQI target ranges (2007) Nephrol Dial Transplant, 22, pp. 1171-1176; Evenepoel, P., Rodriguez, M., Ketteler, M., Laboratory abnormalities in CKD-MBD: Markers, predictors, or mediators of disease? (2014) Semin Nephrol, 34, pp. 151-163; Bellasi, A., Pro: Should phosphate binders be used in chronic kidney disease stage 3-4? (2016) Nephrol Dial Transplant, 31, pp. 184-188; Dusso, A., González, E.A., Martin, K.J., Vitamin D in chronic kidney disease (2011) Best Pract Res Clin Endocrinol Metab, 25, pp. 647-655; Quarles, L.D., Role of FGF-23 in vitamin D and phosphate metabolism: Implications in chronic kidney disease (2012) Exp Cell Res, 318, pp. 1040-1048; Brown, A., Dusso, A., Slatopolsky, E., Vitamin, D., (2008) Seldin and Giebisch´s the Kidney Physiology and Pathology, pp. 1803-1849. , Alpern R, Hebert S, editors, 4th ed. Amsterdam: Elsevier; Fraser, W.D., Hyperparathyroidism (2009) Lancet, 374, pp. 145-158; Dhayat, N.A., Ackermann, D., Pruijm, M., Ponte, B., Ehret, G., Guessous, I., Fibroblast growth factor 23 and markers of mineral metabolism in individuals with preserved renal function (2016) Kidney Int, 90, pp. 648-657; Wolf, M., Mineral (Mal)adaptation to kidney disease (2015) Clin J am Soc Nephrol, 10, pp. 1875-1885; Levin, A., Bakris, G.L., Molitch, M., Smulders, M., Tian, J., Williams, L.A., Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: Results of the study to evaluate early kidney disease (2007) Kidney Int, 71, pp. 31-38; Perwad, F., Zhang, M.Y., Tenenhouse, H.S., Portale, A.A., Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1alpha-hydroxylase expression in vitro (2007) Am J Physiol Renal Physiol, 293, pp. F1577-F1583; Liu, S., Quarles, L.D., How FGF-23 works (2007) J am Soc Nephrol, 18, pp. 1637-1647; Shimada, T., Hasegawa, H., Yamazaki, Y., Muto, T., Hino, R., Takeuchi, Y., FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis (2004) Bone Miner Res, 19, pp. 429-435; Erben, R.G., Andrukhova, O., FGF23-Klotho signaling axis in the kidney (2017) Bone; Ix, J.H., Shlipak, M.G., Wassel, C.L., Whooley, M.A., Fibroblast growth factor-23 and early decrements in kidney function: The heart and soul Study (2010) Nephrol Dial Transplant, 25, pp. 993-997; Kovesdy, C.P., Quarles, L.D., FGF23 from bench to bedside (2016) Am J Physiol Renal, 310, pp. F1168-F1174; Kuro, M., Moe, O.W., FGF23-αKlotho as a paradigm for a kidney-bone network (2017) Bone
publishDate 2017
dc.date.none.fl_str_mv 2017-10-20T22:03:12Z
2017-06
2017-06-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.20344/amp.8040
url https://doi.org/10.20344/amp.8040
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0870-399X
PURE: 3227884
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021828552&doi=10.20344%2famp.8040&partnerID=40&md5=9882cd066d6ec63b47b59a55258fe6cd
https://doi.org/10.20344/amp.8040
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 8
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1777302950484377600